Abstract
The current work investigates the thermal conductivity and mechanical properties of Boron Nitride (BN)-Acrylonitrile Butadiene Styrene (ABS) composites prepared using both 3D printing and injection molding. The thermally conductive, yet electrically insulating composite material provides a unique combination of properties that make it desirable for heat dissipation and packaging applications in electronics. Materials were fabricated via melt mixing on a twin-screw compounder, then injection molded or extruded into filament for fused deposition modeling (FDM) 3D printing. Compositions of up to 35 wt.% BN in ABS were prepared, and the infill orientation of the 3D printed composites was varied to investigate the effect on properties. Injection molding produced a maximum in-plane conductivity of 1.45 W/m-K at 35 wt.% BN, whereas 3D printed samples of 35 wt.% BN showed a value of 0.93 W/m-K, over 5 times the conductivity of pure ABS. The resulting thermal conductivity is anisotropic; with the through-plane thermal conductivity lower by a factor of ~3 for injection molding and ~4 for 3D printing. Adding BN flakes caused a modest increase in the flexural modulus, but resulted in a large decrease in the flexural strength and impact toughness. It is shown that although injection molding produces parts with superior thermal and mechanical properties, BN shows much potential as a filler material for rapid prototyping of thermally conductive composites.










Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bogue, R.: 3D printing: the dawn of a new era in manufacturing? Assem. Autom. 33(4), 307–311 (2013). https://doi.org/10.1108/aa-06-2013-055
Ivanova, O., Williams, C., Campbell, T.: Additive manufacturing (AM) and nanotechnology: promises and challenges. Rapid Prototyp. J. 19(5), 353–364 (2013). https://doi.org/10.1108/rpj-12-2011-0127
Wang, X., Jiang, M., Zhou, Z., Gou, J., Hui, D.: 3D printing of polymer matrix composites: A review and prospective. Compos. Part B. 110, 442–458 (2017). https://doi.org/10.1016/j.compositesb.2016.11.034
Stansbury, J.W., Idacavage, M.J.: 3D printing with polymers: Challenges among expanding options and opportunities. Dent. Mater. 32(1), 54–64 (2016). https://doi.org/10.1016/j.dental.2015.09.018
Bak, D.: Rapid prototyping or rapid production? 3D printing processes move industry towards the latter. Assem. Autom. 23(4), 340–345 (2003). https://doi.org/10.1108/01445150310501190
Espalin, D., Muse, D.W., MacDonald, E., Wicker, R.B.: 3D Printing multifunctionality: structures with electronics. Int. J. Adv. Manuf. Technol. 72(5–8), 963–978 (2014). https://doi.org/10.1007/s00170-014-5717-7
Lee, G.-W., Park, M., Kim, J., Lee, J.I., Yoon, H.G.: Enhanced thermal conductivity of polymer composites filled with hybrid filler. Compos. A: Appl. Sci. Manuf. 37(5), 727–734 (2006). https://doi.org/10.1016/j.compositesa.2005.07.006
Zhou, W., Wang, C., Ai, T., Wu, K., Zhao, F., Gu, H.: A novel fiber-reinforced polyethylene composite with added silicon nitride particles for enhanced thermal conductivity. Compos. A: Appl. Sci. Manuf. 40(6–7), 830–836 (2009). https://doi.org/10.1016/j.compositesa.2009.04.005
Zhou, W., Qi, S., An, Q., Zhao, H., Liu, N.: Thermal conductivity of boron nitride reinforced polyethylene composites. Mater. Res. Bull. 42(10), 1863–1873 (2007). https://doi.org/10.1016/j.materresbull.2006.11.047
Sanada, K., Tada, Y., Shindo, Y.: Thermal conductivity of polymer composites with close-packed structure of nano and micro fillers. Compos. A: Appl. Sci. Manuf. 40(6–7), 724–730 (2009). https://doi.org/10.1016/j.compositesa.2009.02.024
Weidenfeller, B., Höfer, M., Schilling, F.R.: Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene. Compos. A: Appl. Sci. Manuf. 35(4), 423–429 (2004). https://doi.org/10.1016/j.compositesa.2003.11.005
Sato, K., Horibe, H., Shirai, T., Hotta, Y., Nakano, H., Nagai, H., Mitsuishi, K., Watari, K.: Thermally conductive composite films of hexagonal boron nitride and polyimide with affinity-enhanced interfaces. J. Mater. Chem. 20(14), 2749 (2010). https://doi.org/10.1039/b924997d
Kalsoom, U., Peristyy, A., Nesterenko, P.N., Paull, B.: A 3D printable diamond polymer composite: a novel material for fabrication of low cost thermally conducting devices. RSC Adv. 6(44), 38140–38147 (2016). https://doi.org/10.1039/c6ra05261d
Campbell, T.A., Ivanova, O.S.: 3D printing of multifunctional nanocomposites. Nano Today. 8(2), 119–120 (2013). https://doi.org/10.1016/j.nantod.2012.12.002
Jia, Y., He, H., Geng, Y., Huang, B., Peng, X.: High through-plane thermal conductivity of polymer based product with vertical alignment of graphite flakes achieved via 3D printing. Compos. Sci. Technol. 145, 55–61 (2017). https://doi.org/10.1016/j.compscitech.2017.03.035
Hwang, S., Reyes, E.I., Moon, K.-S., Rumpf, R.C., Kim, N.S.: Thermo-mechanical Characterization of Metal/Polymer Composite Filaments and Printing Parameter Study for Fused Deposition Modeling in the 3D Printing Process. J. Electron. Mater. 44(3), 771–777 (2014). https://doi.org/10.1007/s11664-014-3425-6
Nikzad, M., Masood, S.H., Sbarski, I.: Thermo-mechanical properties of a highly filled polymeric composites for Fused Deposition Modeling. Mater. Des. 32(6), 3448–3456 (2011). https://doi.org/10.1016/j.matdes.2011.01.056
Debelak, B., Lafdi, K.: Use of exfoliated graphite filler to enhance polymer physical properties. Carbon. 45(9), 1727–1734 (2007). https://doi.org/10.1016/j.carbon.2007.05.010
Tymrak, B.M., Kreiger, M., Pearce, J.M.: Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Mater. Des. 58, 242–246 (2014). https://doi.org/10.1016/j.matdes.2014.02.038
Ahn, S.H., Montero, M., Odell, D., Roundy, S., Wright, P.K.: Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp. J. 8(4), 248–257 (2002). https://doi.org/10.1108/13552540210441166
Shaffer, S., Yang, K., Vargas, J., Di Prima, M.A., Voit, W.: On reducing anisotropy in 3D printed polymers via ionizing radiation. Polymer. 55(23), 5969–5979 (2014). https://doi.org/10.1016/j.polymer.2014.07.054
Agarwala, M.K., Jamalabad, V.R., Langrana, N.A., Safari, A., Whalen, P.J., Danforth, S.C.: Structural quality of parts processed by fused deposition. Rapid Prototyp. J. 2(4), 4–19 (1996). https://doi.org/10.1108/13552549610732034
Weng, Z., Wang, J., Senthil, T., Wu, L.: Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing. Mater. Des. 102, 276–283 (2016). https://doi.org/10.1016/j.matdes.2016.04.045
Shemelya, C.M., Rivera, A., Perez, A.T., Rocha, C., Liang, M., Yu, X., Kief, C., Alexander, D., Stegeman, J., Xin, H., Wicker, R.B., MacDonald, E., Roberson, D.A.: Mechanical, Electromagnetic, and X-ray Shielding Characterization of a 3D Printable Tungsten–Polycarbonate Polymer Matrix Composite for Space-Based Applications. J. Electron. Mater. 44(8), 2598–2607 (2015). https://doi.org/10.1007/s11664-015-3687-7
Shofner, M.L., Lozano, K., Rodríguez-Macías, F.J., Barrera, E.V.: Nanofiber-reinforced polymers prepared by fused deposition modeling. J. Appl. Polym. Sci. 89(11), 3081–3090 (2003). https://doi.org/10.1002/app.12496
Ning, F., Cong, W., Qiu, J., Wei, J., Wang, S.: Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos. Part B. 80, 369–378 (2015). https://doi.org/10.1016/j.compositesb.2015.06.013
Jin, W., Zhang, W., Gao, Y., Liang, G., Gu, A., Yuan, L.: Surface functionalization of hexagonal boron nitride and its effect on the structure and performance of composites. Appl. Surf. Sci. 270, 561–571 (2013). https://doi.org/10.1016/j.apsusc.2013.01.086
Yung, K.C., Liem, H.: Enhanced thermal conductivity of boron nitride epoxy-matrix composite through multi-modal particle size mixing. J. Appl. Polym. Sci. 106(6), 3587–3591 (2007). https://doi.org/10.1002/app.27027
Xu, Y., Chung, D.D.L.: Increasing the thermal conductivity of boron nitride and aluminum nitride particle epoxy-matrix composites by particle surface treatments. Compos Interfaces. 7(4), 243–256 (2012). https://doi.org/10.1163/156855400750244969
Ng, H.Y., Lu, X., Lau, S.K.: Thermal conductivity of boron nitride-filled thermoplastics: Effect of filler characteristics and composite processing conditions. Polym. Compos. 26(6), 778–790 (2005). https://doi.org/10.1002/pc.20151
Bigg, D.M.: Mechanical properties of particulate filled polymers. Polym. Compos. 8(2), 115–122 (1987). https://doi.org/10.1002/pc.750080208
Huang, M.T., Ishida, H.: Investigation of the boron nitride/polybenzoxazine interphase. J. Polym. Sci. B Polym. Phys. 37(17), 2360–2372 (1999). https://doi.org/10.1002/(SICI)1099-0488(19990901)37:17<2360::AID-POLB7>3.0.CO;2-V
Xavier, S.F., Schultz, J.M., Friedrich, K.: Fracture propagation in particulate filled polypropylene composites. J. Mater. Sci. 25(5), 2411–2420 (1990). https://doi.org/10.1007/bf00638035
Nan, C.-W., Birringer, R., Clarke, D.R., Gleiter, H.: Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 81(10), 6692–6699 (1997). https://doi.org/10.1063/1.365209
Yuan, C., Duan, B., Li, L., Xie, B., Huang, M., Luo, X.: Thermal Conductivity of Polymer-Based Composites with Magnetic Aligned Hexagonal Boron Nitride Platelets. ACS Appl. Mater. Interfaces. 7(23), 13000–13006 (2015). https://doi.org/10.1021/acsami.5b03007
Acknowledgements
The authors kindly thank 3M’s Advanced Materials Division for supplying the Boron Nitride flakes used in this work.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Quill, T.J., Smith, M.K., Zhou, T. et al. Thermal and mechanical properties of 3D printed boron nitride – ABS composites. Appl Compos Mater 25, 1205–1217 (2018). https://doi.org/10.1007/s10443-017-9661-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10443-017-9661-1