Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Geometric Hermite interpolation by spatial Pythagorean-hodograph cubics

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

It is shown that, depending upon the orientation of the end tangents t0,t1 relative to the end point displacement vector Δp=p1p0, the problem of G1 Hermite interpolation by PH cubic segments may admit zero, one, or two distinct solutions. For cases where two interpolants exist, the bending energy may be used to select among them. In cases where no solution exists, we determine the minimal adjustment of one end tangent that permits a spatial PH cubic Hermite interpolant. The problem of assigning tangents to a sequence of points p0,. . .,pn in R3, compatible with a G1 piecewise-PH-cubic spline interpolating those points, is also briefly addressed. The performance of these methods, in terms of overall smoothness and shape-preservation properties of the resulting curves, is illustrated by a selection of computed examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Albrecht and R.T. Farouki, Construction of C2 Pythagorean hodograph interpolating splines by the homotopy method, Adv. Comput. Math. 5 (1996) 417–442.

    Google Scholar 

  2. H.I. Choi and C.Y. Han, Euler–Rodrigues frames on spatial Pythagorean-hodograph curves, Comput. Aided Geom. Design 19 (2002) 603–620.

    Article  Google Scholar 

  3. H.I. Choi, D.S. Lee and H.P. Moon, Clifford algebra, spin representation and rational parameterization of curves and surfaces, Adv. Comput. Math. 17 (2002) 5–48.

    Article  Google Scholar 

  4. P. Costantini and F. Pelosi, Shape-preserving approximation by space curves, Numer. Algorithms 27 (2001) 237–264.

    Article  Google Scholar 

  5. R.T. Farouki, The elastic bending energy of Pythagorean-hodograph curves, Comput. Aided Geom. Design 13 (1996) 227–241.

    Article  Google Scholar 

  6. R.T. Farouki, Exact rotation-minimizing frames for spatial Pythagorean-hodograph curves, Graph. Models 64 (2002) 382–395.

    Article  Google Scholar 

  7. R.T. Farouki, M. al-Kandari and T. Sakkalis, Structural invariance of spatial Pythagorean hodographs, Comput. Aided Geom. Design 19 (2002) 395–407.

    Article  Google Scholar 

  8. R.T. Farouki, M. al-Kandari and T. Sakkalis, Hermite interpolation by rotation-invariant spatial Pythagorean-hodograph curves, Adv. Comput. Math. 17 (2002) 369–383.

    Article  Google Scholar 

  9. R.T. Farouki and C.Y. Han, Rational approximation schemes for rotation-minimizing frames on Pythagorean-hodograph curves, Comput. Aided Geom. Design 20 (2003) 435–454.

    Article  Google Scholar 

  10. R.T. Farouki, B.K. Kuspa, C. Manni and A. Sestini, Efficient solution of the complex quadratic tridiagonal system for C2 PH quintic splines, Numer. Algorithms 27 (2001) 35–60.

    Article  Google Scholar 

  11. R.T. Farouki, J. Manjunathaiah, D. Nicholas, G.-F. Yuan and S. Jee, Variable feedrate CNC interpolators for constant material removal rates along Pythagorean-hodograph curves, Comput. Aided Design 30 (1998) 631–640.

    Article  Google Scholar 

  12. R.T. Farouki, C. Manni and A. Sestini, Spatial C2 PH quintic splines, in: Curve and Surface Design: Saint Malo 2002, eds. T. Lyche, M.-L. Mazure and L.L. Schumaker (Nashboro Press, 2003) pp. 147–156.

  13. R.T. Farouki and C.A. Neff, Hermite interpolation by Pythagorean-hodograph quintics, Math. Comp. 64 (1995) 1589–1609.

    Google Scholar 

  14. R.T. Farouki and T. Sakkalis, Pythagorean-hodograph space curves, Adv. Comput. Math. 2 (1994) 41–66.

    Google Scholar 

  15. R.T. Farouki and S. Shah, Real-time CNC interpolators for Pythagorean-hodograph curves, Comput. Aided Geom. Design 13 (1996) 583–600.

    Article  Google Scholar 

  16. T.N.T. Goodman and B.H. Ong, Shape preserving interpolation by space curves, Comput. Aided Geom. Design 15 (1997) 1–17.

    Article  Google Scholar 

  17. H. Guggenheimer, Computing frames along a trajectory, Comput. Aided Geom. Design 6 (1989) 77–78.

    Article  Google Scholar 

  18. B. Jüttler, Hermite interpolation by Pythagorean hodograph curves of degree seven, Math. Comp. 70 (2001) 1089–1111.

    Article  Google Scholar 

  19. B. Jüttler and C. Mäurer, Cubic Pythagorean-hodograph spline curves and applications to sweep surface modeling, Comput. Aided Design 31 (1999) 73–83.

    Article  Google Scholar 

  20. F. Klok, Two moving coordinate frames for sweeping along a 3D trajectory, Comput. Aided Geom. Design 3 (1986) 217–229.

    Article  Google Scholar 

  21. H.P. Moon, R.T. Farouki and H.I. Choi, Construction and shape analysis of PH quintic Hermite interpolants, Comput. Aided Geom. Design 18 (2001) 93–115.

    Article  Google Scholar 

  22. J. Roe, Elementary Geometry (Oxford Univ. Press, Oxford, 1993).

    Google Scholar 

  23. V. Snyder and C.H. Sisam, Analytic Geometry of Space (Henry Holt, New York, 1914).

    Google Scholar 

  24. D.M.Y. Sommerville, Analytical Geometry of Three Dimensions (Cambridge Univ. Press, Cambridge, 1951).

    Google Scholar 

  25. Y.-F. Tsai, R.T. Farouki and B. Feldman, Performance analysis of CNC interpolators for time-dependent feedrates along PH curves, Comput. Aided Geom. Design 18 (2001) 245–265.

    Article  Google Scholar 

  26. J.V. Uspensky, Theory of Equations (McGraw-Hill, New York, 1948).

    Google Scholar 

  27. M.G. Wagner and B. Ravani, Curves with rational Frenet–Serret motion, Comput. Aided Geom. Design 15, 79–101.

  28. W. Wang and B. Joe, Robust computation of the rotation minimizing frame for sweep surface modelling, Comput. Aided Design 29 (1997) 379–391.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Pelosi.

Additional information

Communicated by C.A. Micchelli

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pelosi, F., Farouki, R.T., Manni, C. et al. Geometric Hermite interpolation by spatial Pythagorean-hodograph cubics. Adv Comput Math 22, 325–352 (2005). https://doi.org/10.1007/s10444-003-2599-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-003-2599-x

Keywords