Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Duality and Riemannian cubics

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Riemannian cubics are curves used for interpolation in Riemannian manifolds. Applications in trajectory planning for rigid bodiy motion emphasise the group SO(3) of rotations of Euclidean 3-space. It is known that a Riemannian cubic in a Lie group G with bi-invariant Riemannian metric defines a Lie quadraticV in the Lie algebra, and satisfies a linking equation. Results of the present paper include explicit solutions of the linking equation by quadrature in terms of the Lie quadratic, when G is SO(3) or SO(1,2). In some cases we are able to give examples where the Lie quadratic is also given in closed form. A basic tool for constructing solutions is a new duality theorem. Duality is also used to study asymptotics of differential equations of the form \(\dot{x}(t)=(\beta_{0}+t\beta_{1})x(t)\) , where β01 are skew-symmetric 3×3 matrices, and x :ℝ→ SO(3). This is done by showing that the dual of β0+tβ1 is a null Lie quadratic. Then results on asymptotics of x follow from known properties of null Lie quadratics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.H. Ahlberg, E.N. Nilson and J.H. Walsh, The Theory of Splines and Their Applications, Mathematics in Science and Engineering, Vol. 38 (Academic Press, New York, 1967).

    MATH  Google Scholar 

  2. J. Angeles and R. Akras, Cartesian trajectory planning for 3-DOF spherical wrists, in: IEEE Conf. on Robotics and Automation, Scottsdale, AZ, May 1989, pp. 68–74.

  3. A.H. Barr, B. Currin, S. Gabriel and J.F. Hughes, Smooth interpolation of orientations with angular velocity constraints using quaternions, Comput. Graphics 26(2) (1992) 313–320.

    Google Scholar 

  4. J.M. Brady, J.M. Hollerbach, T.L. Johnson, T. Lozano-Perez and M.T. Masson, Robot Motion: Planning and Control (MIT Press, Cambridge, MA, 1982).

    Google Scholar 

  5. S. Buss, Accurate and efficient simulations of rigid body rotations, J. Comput. Phys. 164 (2000) 377–406.

    Article  MATH  MathSciNet  Google Scholar 

  6. M. Camarinha, F.S. Leite and P. Crouch, On the geometry of Riemannian cubic polynomials, Differential Geom. Appl. 15(2) (2001) 107–135.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Camarinha, F.S. Leite and P. Crouch, Splines of class C k on non-Euclidean spaces, IMA J. Math. Control Inform. 12(4) (1995) 399–410.

    MathSciNet  MATH  Google Scholar 

  8. P.B. Chapman and L. Noakes, Singular perturbations and interpolation – a problem in robotics, Nonlinear Analysis TMA 16(10) (1991) 849–859.

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Crouch, G. Kun and F.S. Leite, The De Castlejau algorithm on Lie groups and spheres, J. Dynam. Control Systems 5(3) (1999) 397–429.

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Crouch and F.S. Leite, The dynamic interpolation problem: On Riemannian manifolds, Lie groups, and symmetric spaces, J. Dynam. Control Systems 1(2) (1995) 177–202.

    Article  MathSciNet  MATH  Google Scholar 

  11. T. Duff, Quaternion splines for animating rotations, in: Second Summer Graphics Workshop, Monterey, CA, Usenix Association, 12–13 December 1985, pp. 54–62.

  12. S.A. Gabriel and J.T. Kajiya, Spline interpolation in curved manifolds, unpublished manuscript (1985).

  13. J. Jost, Riemannian Geometry and Geometrical Analysis (Springer, Berlin, 1995).

    Google Scholar 

  14. I.G. Kang and F.C. Park, Cubic spline algorithms for orientation interpolation, Internat. J. Numer. Methods Engrg. 46 (1999) 45–64.

    Article  MathSciNet  MATH  Google Scholar 

  15. K. Krakowski, Ph.D. thesis, University of Western Australia (2002) submitted.

  16. F.S. Leite, M. Camarinha and P. Crouch, Elastic curves as solutions of Riemannian and sub-Riemannian control problems, Math. Control Signals Systems 13(2) (2000) 140–155.

    Article  MathSciNet  MATH  Google Scholar 

  17. L. Noakes, Asymptotically smooth splines, in: World Scientific Series in Approximations and Decompositions, Vol. 4 (1994) pp. 131–137.

  18. L. Noakes, Riemannian quadratics, in: Curves and Surfaces with Applications in CAGD, eds. A. Le Méhauté, C. Rabut and L.L. Schumaker, Vol. 1 (Vanderbilt Univ. Press, Nashville, TN, 1997) pp. 319–328.

    Google Scholar 

  19. L. Noakes, Nonlinear corner-cutting, Adv. Comput. Math. 8 (1998) 165–177.

    Article  MATH  MathSciNet  Google Scholar 

  20. L. Noakes, Accelerations of Riemannian quadratics, Proc. Amer. Math. Soc. 127 (1999) 1827–1836.

    Article  MATH  MathSciNet  Google Scholar 

  21. L. Noakes, Quadratic interpolation on spheres, Adv. Comput. Math., in press.

  22. L. Noakes, Null cubics and Lie quadratics, J. Math. Phys., in press.

  23. L. Noakes, G. Heinzinger and B. Paden, Cubic splines on curved spaces, J. Math. Control Inform. 6 (1989) 465–473.

    MathSciNet  MATH  Google Scholar 

  24. F.C. Park and B. Ravani, Smooth invariant interpolation of rotations, ACM Trans. Graphics 16(3) (1997) 277–295.

    Article  Google Scholar 

  25. R.P. Paul, Manipulator path control, IEEE Trans. Systems Man Cybernet. 9 (1979) 702–711.

    Article  MATH  Google Scholar 

  26. K. Shoemake, Animating rotation with quaternion curves, SIGGRAPH 19(3) (1985) 245–254.

    Article  Google Scholar 

  27. H.H. Tan and R.B. Potts, A discrete path/trajectory planner for robotic arms, J. Austral. Math. Soc. Ser. B 31 (1989) 1–28.

    Article  MathSciNet  MATH  Google Scholar 

  28. R.H. Taylor, Planning and execution of straight-line manipulator trajectories, IBM J. Res. Develop. 23 (1979) 424–436.

    Article  Google Scholar 

  29. M. Zefran and V. Kumar, Planning of smooth motions on SE(3), in: IEEE Internat. Conf. on Robotics and Automation, Minneapolis, MN, 1996.

  30. M. Zefran and V. Kumar, Two methods for interpolating rigid body motions, in: IEEE Internat. Conf. on Robotics and Automation, Leuven, Belgium, 1996.

  31. M. Zefran and V. Kumar, Interpolation schemes for rigid body motions, Comput. Aided Design 30(3) (1998) 179–189.

    Article  MATH  Google Scholar 

  32. M. Zefran, V. Kumar and C. Croke, Choice of Riemannian metrics for rigid body dynamics, in: Proc. of ASME Design Engineering Technical Conf. and Computers in Engineering Conf., Irvine, CA, 18–22 August 1996, pp. 1–11.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Y. Xu

To Charles Micchelli, with warm greetings and deep respect, on his 60th birthday

Mathematics subject classifications (2000)

53A17, 53B20, 65D18, 68U05, 70E60.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noakes, L. Duality and Riemannian cubics. Adv Comput Math 25, 195–209 (2006). https://doi.org/10.1007/s10444-004-7621-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-004-7621-4

Keywords