Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Total variation-penalized Poisson likelihood estimation for ill-posed problems

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The noise contained in data measured by imaging instruments is often primarily of Poisson type. This motivates, in many cases, the use of the Poisson negative-log likelihood function in place of the ubiquitous least squares data fidelity when solving image deblurring problems. We assume that the underlying blurring operator is compact, so that, as in the least squares case, the resulting minimization problem is ill-posed and must be regularized. In this paper, we focus on total variation regularization and show that the problem of computing the minimizer of the resulting total variation-penalized Poisson likelihood functional is well-posed. We then prove that, as the errors in the data and in the blurring operator tend to zero, the resulting minimizers converge to the minimizer of the exact likelihood function. Finally, the practical effectiveness of the approach is demonstrated on synthetically generated data, and a nonnegatively constrained, projected quasi-Newton method is introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acar, R., Vogel, C.R.: Analysis of bounded variation penalty methods for ill-posed problems. Inverse Problems 10, 1217–1229 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Asaki, T., Chartrand, R., Le, T.: A Variational Approach to Reconstructing Images Corrupted by Poisson Noise. UCLA CAM Report 05-49 (November 2005)

  3. Bardsley, J.M.: A limited memory, quasi-newton preconditioner for nonnegatively constrained image reconstruction. J. Opt. Soc. Amer. A 21(5), 724–731 (2004)

    Article  Google Scholar 

  4. Bardsley, J.M., Laobeul, N.: Tikhonov regularized Poisson likelihood estimation: theoretical justification and a computational method. Inverse Probl. Sci. Eng. 16(2), 199–215 (January 2008)

    Article  MathSciNet  Google Scholar 

  5. Bardsley, J.M., Vogel, C.R.: A nonnnegatively constrained convex programming method for image reconstruction. SIAM J. Sci. Comput. 25(4), 1326–1343 (2004)

    Article  MathSciNet  Google Scholar 

  6. Berterro, M., Boccacci, P.: Introduction to Inverse Problems in Imaging. Institute of Physics Publishing, Bristol (1998)

    Book  Google Scholar 

  7. Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM J. Control Optim. 20, 221–246 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chambolle, A., Lions, P.-L.: Image recovery via total variation minimization and related problems. Numer. Math. 76(2), 167–188 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Conway, J.B.: A Course in Functional Analysis, 2nd edn. Springer, Heidelberg (1990)

    MATH  Google Scholar 

  10. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC, Boca Raton (1992)

    Google Scholar 

  11. Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Monographs in Mathematics, vol. 80. Birkhauser Verlag, Basel (1984)

    Google Scholar 

  12. Green, M.: Statistics of images, the TV algorithm of Rudin-Osher-Fatemi for image denoising, and an improved denoising algorithm. CAM Report 02-55, UCLA (October 2002)

  13. Kelley, C.T.: Iterative Methods for Optimization. SIAM, Philadelphia (1999)

    MATH  Google Scholar 

  14. Le, T., Chartrand, R., Asaki, T.J.: A variational approach to reconstructing images corruted by poisson noise. J. Math. Imaging Vision 27(3), 257–263 (2007)

    Article  MathSciNet  Google Scholar 

  15. Moré, J.J., Toraldo, G.: On the solution of large quadratic programming problems with bound constraints. SIAM J. Optim. 1, 93–113 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  16. Nocedal, J., Wright, S.: Numerical Optimization. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  17. Nowak, R., Kolaczyk, E.: A statistical multiscale framework for poisson inverse problems. IEEE Trans. Inform. Theory 46(5), 1811–1825 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60(1–4), 259–268 (1992)

    Article  MATH  Google Scholar 

  19. Sardy, S., Antoniadis, A., Tseng, P.: Automatic smoothing with wavelets for a wide class of distributions. J. Comput. Graph. Statist. 13(2), 1–23 (2004)

    MathSciNet  Google Scholar 

  20. Sardy, S., Tseng, P.: On the statistical analysis of smoothing by maximizing dirty Markov random field posterior distributions. J. Amer. Statist. Assoc. 99(465), 191–204(14) (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Snyder, D.L., Hammoud, A.M., White, R.L.: Image recovery from data acquired with a charge-coupled-device camera. J. Opt. Soc. Amer. A 10, 1014–1023 (1993)

    Article  Google Scholar 

  22. Snyder, D.L., Helstrom, C.W., Lanterman, A.D., Faisal, M., White, R.L.: Compensation for readout noise in CCD images. J. Opt. Soc. Amer. A 12, 272–283 (1995)

    Article  Google Scholar 

  23. Tikhonov, A.N., Goncharsky, A.V., Stepanov, V.V., Yagola, A.G.: Numerical Methods for the Solution of Ill-Posed Problems. Kluwer Academic, Boston (1990)

    MATH  Google Scholar 

  24. Yu, D.F., Fessler, J.A.: Edge-preserving tomographic reconstruction with nonlocal regularization. IEEE Trans. Med. Imag. 21(2), 159–173 (2002)

    Article  Google Scholar 

  25. Vogel, C.R.: Computational Methods for Inverse Problems. SIAM, Philadelphia (2002)

    MATH  Google Scholar 

  26. Vogel, C.R., Oman, M.E.: A fast, robust algorithm for total variation based reconstruction of noisy, blurred images. IEEE Trans. Image Process. 7, 813–824 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  27. Zeidler, E.: Applied Functional Analysis: Main Principles and their Applications. Springer, New York (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johnathan M. Bardsley.

Additional information

Communicated by Lixin Shen and Yuesheng Xu.

This work was supported by the NSF under grant DMS-0504325.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bardsley, J.M., Luttman, A. Total variation-penalized Poisson likelihood estimation for ill-posed problems. Adv Comput Math 31, 35–59 (2009). https://doi.org/10.1007/s10444-008-9081-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-008-9081-8

Keywords

PACS