Abstract
In this paper we proposed an iterative elimination algorithm for sparse principal component analysis. It recursively eliminates variables according to certain criterion that aims to minimize the loss of explained variance, and reconsiders the sparse principal component analysis problem until the desired sparsity is achieved. Two criteria, the approximated minimal variance loss (AMVL) criterion and the minimal absolute value criterion, are proposed to select the variables eliminated in each iteration. Deflation techniques are discussed for multiple principal components computation. The effectiveness is illustrated by both simulations on synthetic data and applications on real data.
Similar content being viewed by others
References
Cadima, J., Jolliffe, I.T.: Loadings and correlations in the interpretation of principal components. J. Appl. Stat. 22(2), 203–215 (1995)
d’Aspremont, A., El Ghaoui, L., Jordan, M.I., Lanckriet, G.R.G.: A direct formulation for sparse PCA using semidefinite programming. SIAM Rev. 49(3), 434–448 (electronic) (2007)
d’Aspremont, A., Bach, F., El Ghaoui, L.: Optimal solutions for sparse principal component analysis. J. Mach. Learn. Res. 9, 1269–1294 (2008)
Golub, G., Loan, C.V.: Matrix Computations. Johns Hopkins University Press, Baltimore (1983)
Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Mach. Learn. 46, 389–422 (2002)
Jeffers, J.: Two case studies in the application of principal component. Appl. Stat. 16, 225–236 (1967)
Jolliffe, I.: Principal Component Analysis. Springer, Berlin (2002)
Jolliffe, I.T., Trendafilov, N.T., Uddin, M.: A modified principal component technique based on the LASSO. J. Comput. Graph. Stat. 12(3), 531–547 (2003)
Journée, M., Nesterov, Y., Richtárik, P., Sepulchre, R.: Generalized power method for sparse principal component analysis. J. Mach. Learn. Res. 11, 517–553 (2010)
Mackey, L.: Deflation methods for sparse PCA. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems, vol. 21, pp. 1017–1024 (2009)
Moghaddam, B., Weiss, Y., Avidan, S.: Spectral bounds for sparse PCA: exact and greedy algorithms. In: Weiss, Y., Schölkopf, B., Platt, J. (eds.) Advances in Neural Information Processing Systems, vol. 18, pp. 915–922. MIT Press, Cambridge (2006)
Ramaswamy, S., Tamayo, P., Rifkin, R., Mukheriee, S., Yeang, C., Angelo, M., Ladd, C., Reich, M., Latulippe, E., Mesirov, J., Poggio, T., Gerald, W., Loda, M., Lander, E., Golub, T.: Multiclass cancer diagnosis using tumor gene expression signature. Proc. Natl. Acad. Sci. 98, 15149–15154 (2001)
Shen, H., Huang, J.Z.: Sparse principal component analysis via regularized low rank matrix approximation. J. Multivar. Anal. 99(6), 1015–1034 (2008)
Sriperumbudur, B., Torres, D., Lanckriet, G.: Sparse eigen methods by dc programming. In: Proceedings of the 24th International Conference on Machine Learning, pp. 831–838 (2007)
Sriperumbudur, B., Torres, D., Lanckriet, G.: A D.C. Programming Approach to the Sparse Generalized Eigenvalue Problem (2009). Available on arXiv:0901.1504v2
Zass, R., Shashua, A.: Nonnegative sparse PCA. Adv. Neural Inf. Process. Syst. 19, 1561 (2007)
Zou, H., Hastie, T., Tibshirani, R.: Sparse principal component analysis. J. Comput. Graph. Stat. 15(2), 265–286 (2006)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Charles Micchelli.
Rights and permissions
About this article
Cite this article
Wang, Y., Wu, Q. Sparse PCA by iterative elimination algorithm. Adv Comput Math 36, 137–151 (2012). https://doi.org/10.1007/s10444-011-9186-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10444-011-9186-3
Keywords
- Sparse principal component analysis
- Iterative elimination
- Approximated minimal variance loss criterion
- Deflation