Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Decompositions of trigonometric polynomials with applications to multivariate subdivision schemes

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We study multivariate trigonometric polynomials satisfying the “sum-rule” conditions of a certain order. Based on the polyphase representation of these polynomials relative to a general dilation matrix, we develop a simple constructive method for a special type of decomposition of such polynomials. These decompositions are of interest in the analysis of convergence and smoothness of multivariate subdivision schemes associated with general dilation matrices. The approach presented in this paper leads directly to constructive algorithms, and is an alternative to the analysis of multivariate subdivision schemes in terms of the joint spectral radius of certain operators. Our convergence results apply to arbitrary dilation matrices, while the smoothness results are limited to two classes of dilation matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cohen, A., Gröchenig, K., Villemoes, L.F.: Regularity of multivariate refinable functions. Constr. Approx. 15(2), 241–255 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cavaretta, A.S., Dahmen, W., Micchelli, C.A.: Stationary subdivision. Mem. Am. Math. Soc. 93(453), vi+186 (1991)

    MathSciNet  Google Scholar 

  3. Charina, M.: Vector multivariate subdivisio0n schemes: comparison of spectral methods for their regularity analysis. Appl. Comput. Harmon. Anal. (2011, in press)

  4. Chen, D.-R., Jia, R.-Q., Riemenschneider, S.D.: Convergence of vector subdivision schemes in Sobolev spaces. Appl. Comput. Harmon. Anal. 12(1), 128–149 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dyn, N.: Subdivision schemes in computer aided geometric design. In: Light, W. (ed.) Advances in Numerical Analysis, vol. II. Wavelets, Subdivision Algorithms and Radial Basis Functions, pp. 36–104. Clarendon Press, Oxford (1992)

    Google Scholar 

  6. Jia, R.Q.: Approximation properties of multivariate wavelets. Math. Comput. 67, 647–655 (1998)

    Article  MATH  Google Scholar 

  7. Han, B.: Computing the smoothness exponent of a symmetric multivariate refinable function. SIAM J. Matrix Anal. Appl. 24, 693–714 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Han, B.: Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix. J. Comput. Appl. Math. 155, 43–67 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Han, B.: Vector cascade algorithms and refinable function vector in Sobolev spaces. J. Approx. Theory 124, 44–88 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Han, B., Jia, R.-Q.: Multivariate refinement equations and convergence of subdivision schemes. SIAM J. Math. Anal. 29(5), 1177–1999 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Latour, V., Müller, J., Nickel, W.: Stationry subdivision for general scaling matrices. Math. Z. 227, 645–661 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Möller, H.M., Sauer, T.: Multivariate refinable functions of high approximation order via quotient ideals of Laurent polynomials. Adv. Comput. Math. 20(1–3), 205–228 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Novikov, I.Ya., Protasov, V.Yu., Skopina, M.A.: Wavelet theory. In: Translations Mathematical Monographs, vol. 239. AMS, Providence (2011)

    Google Scholar 

  14. Sauer, T.: How to generate smoother refinable functions from given one In: Haussmann, W., Jetter, K., Reimer, M., Stökler, J. (eds.) Modern Developments in Multivariate Approximation. International Series of Numerical Mathematics, vol. 145, pp. 279–294 (2003)

  15. Sauer, T.: Differentiability of multivariate refinable functions and factorization. Adv. Comput. Math. 26(1–3), 211–235 (2006)

    Article  MathSciNet  Google Scholar 

  16. Skopina, M.: On construction of multivariate wavelets with vanishing moments. ACHA 20(3), 375–390 (2006)

    MathSciNet  MATH  Google Scholar 

  17. Wojtaszczyk, P.: A mathematical introduction to wavelets. Lond. Math. Soc. Stud. Texts, vol. 37, xii+261 pp. Cambridge University Press, Cambridge (1997)

  18. Zhou, D.-X.: Norms concerning subdivision sequences and their// applications in wavelets. Appl. Comput. Harmon. Anal. 11(3), 329–346 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Skopina.

Additional information

Communicated by R.Q. Jia.

This research was supported by The Hermann Minkowski Center for Geometry at Tel-Aviv University. The second author is also supported by grants 09-01-00162 and 12-01-00216 of RFBR.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dyn, N., Skopina, M. Decompositions of trigonometric polynomials with applications to multivariate subdivision schemes. Adv Comput Math 38, 321–349 (2013). https://doi.org/10.1007/s10444-011-9239-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-011-9239-7

Keywords

Mathematics Subject Classifications (2010)