Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An efficient heuristic approach to detecting graph isomorphism based on combinations of highly discriminating invariants

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The search for an easily computable, finite, complete set of graph invariants remains a challenging research topic. All measures characterizing the topology of a graph that have been developed thus far exhibit some degree of degeneracy, i.e., an inability to distinguish between non-isomorphic graphs. In this paper, we show that certain graph invariants can be useful in substantially reducing the computational complexity of isomorphism testing. Our findings are underpinned by numerical results based on a large scale statistical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdulrahim, M., Misra, M.: A graph isomorphism algorithm for object recognition. Pattern Anal. Appl. 1, 189–201 (1998)

    Article  MATH  Google Scholar 

  2. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley (1974)

  3. Balaban, A.T., Balaban, T.S.: New vertex invariants and topological indices of chemical graphs based on information on distances. J. Math. Chem. 8, 383–397 (1991)

    Article  MathSciNet  Google Scholar 

  4. Balaban, A.T., Ivanciuc, O.: Historical development of topological indices. In: Devillers, J., Balaban, A.T. (eds.) Topological Indices and Related Descriptors in QSAR and QSPAR, pp. 21–57. Gordon and Breach Science Publishers. Amsterdam, The Netherlands (1999)

  5. Bonchev, D.: Information Theoretic Indices for Characterization of Chemical Structures. Research Studies Press, Chichester (1983)

    Google Scholar 

  6. Bonchev, D.: Information theoretic measures of complexity. In: Meyers, R. (ed.) Encyclopedia of Complexity and System Science, vol. 5, pp. 4820–4838. Springer (2009)

  7. Bonchev, D., Mekenyan, O., Trinajstić, N.: Isomer discrimination by topological information approach. J. Comput. Chem. 2(2), 127–148 (1981)

    Article  MathSciNet  Google Scholar 

  8. Bonchev, D., Rouvray, D.H.: Complexity in Chemistry, Biology, and Ecology. Mathematical and Computational Chemistry. Springer, New York, NY, USA (2005)

    Book  Google Scholar 

  9. Bonchev, D., Trinajstić, N.: Information theory, distance matrix and molecular branching. J. Chem. Phys. 67, 4517–4533 (1977)

    Article  Google Scholar 

  10. Conte, D., Foggia, F., Sansone, C., Vento, M.: Thirty years of graph matching in pattern regocnition. Int. J. Pattern Recogn. 18, 265–298 (2004)

    Article  Google Scholar 

  11. Corneil, D.G., Gotlieb, C.C.: An efficient algorithm for graph isomorphism. J. ACM 17, 51–64 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cvetković, D.M., Doob, M., Sachs, H.: Spectra of graphs. theory and application. Deutscher Verlag der Wissenschaften, Berlin, Germany (1980)

    Google Scholar 

  13. Darga, P.T., Sakallah, K.A., Markov, I.L.: Faster symmetry discovery using sparsity of symmetries. In: Proceedings of the 45st Design Automation Conference, Anaheim, California, pp. 149–154 (2008)

  14. Dehmer, M., Mowshowitz, A.: A history of graph entropy measures. Inform. Sci. 1, 57–78 (2011)

    Article  MathSciNet  Google Scholar 

  15. Dehmer, M., Müller, L., Graber, A.: New polynomial-based molecular descriptors with low degeneracy. PLoS ONE 5(7), e11393 (2010)

    Article  Google Scholar 

  16. Dehmer, M., Varmuza, K.: On aspects of the degeneracy of topological indices. In: Enachescu, F., Filip, F.G., Iantovics, B. (eds.) Advanced Computational Technologies. Romanian Academy Press (2012, in press)

  17. Dehmer, M., Varmuza, K., Borgert, S., Emmert-Streib, F.: On entropy-based molecular descriptors: Statistical analysis of real and synthetic chemical structures. J. Chem. Inf. Model. 49, 1655–1663 (2009)

    Article  Google Scholar 

  18. Devillers, J., Balaban, A.T.: Topological Indices and Related Descriptors in QSAR and QSPR. Gordon and Breach Science Publishers. Amsterdam, The Netherlands (1999)

  19. Diudea, M.V., Gutman, I., Jäntschi, L.: Molecular Topology. Nova Publishing, New York, NY, USA (2001)

    Google Scholar 

  20. Diudea, M.V., Ilić, A., Varmuza, K., Dehmer, M.: Network analysis using a novel highly discriminating topological index. Complexity 16, 32–39 (2011)

    Article  Google Scholar 

  21. Emmert-Streib, F., Dehmer, M.: Exploring statistical and population aspects of network complexity. PLoS ONE 7, e34,523 (2012)

    Article  Google Scholar 

  22. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences. Freeman (1979)

  23. Gross, J.L., Yellen, J.: Graph Theory and Its Applications, 2nd edn. Discrete Mathematics and its Applications. Chapman & Hall, Boca Raton (2006)

    Google Scholar 

  24. Harary, F.: Graph Theory. Addison Wesley Publishing Company, Reading, MA, USA (1969)

    Google Scholar 

  25. Jukna, S.: On graph complexity. Combin. Probab. Comput. 15, 855–876 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Junttila, T., Kaski, P.: Engineering an efficient canonical labeling tool for large and sparse graphs. In: Applegate, D., Brodat, G.S., Panario, D., Sedgewick, R. (eds.) Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments and the Fourth Workshop on Analytic Algorithms and Combinatorics. SIAM (2007)

  27. Kim, J., Wilhelm, T.: What is a complex graph? Physica A 387, 2637–2652 (2008)

    Article  MathSciNet  Google Scholar 

  28. Konstantinova, E.V.: The discrimination ability of some topological and information distance indices for graphs of unbranched hexagonal systems. J. Chem. Inf. Comput. Sci. 36, 54–57 (1996)

    Article  Google Scholar 

  29. Konstantinova, E.V., Skorobogatov, V.A., Vidyuk, M.V.: Applications of information theory in chemical graph theory. Indian J. Chem. A 42, 1227–1240 (2002)

    Google Scholar 

  30. Lewis, A.: The convex analysis of unitarily invariant matrix functions. J. Convex Anal. 2, 173–183 (1995)

    MathSciNet  MATH  Google Scholar 

  31. Liu, X., Klein, D.J.: The graph isomorphism problem. J. Comp. Chem. 12(10), 1243–1251 (1991)

    Article  MathSciNet  Google Scholar 

  32. Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in polynomial time. J. Comput. Syst. Sci. 25, 42–49 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  33. McKay, B.D.: Graph isomorphisms. Congr. Numer. 730, 45–87 (1981)

    MathSciNet  Google Scholar 

  34. McKay, B.D.: Isomorph-free exhaustive generation. J. Algorithm 26, 306–324 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  35. McKay, B.D.: Nauty. http://cs.anu.edu.au/~bdm/nauty/ (2010)

  36. Mehler, A., Weiß, P., Lücking, A.: A network model of interpersonal alignment. Entropy 12(6), 1440–1483 (2010). doi:10.3390/e12061440

    Article  Google Scholar 

  37. Mowshowitz, A.: Entropy and the complexity of the graphs I: an index of the relative complexity of a graph. Bull. Math. Biophys. 30, 175–204 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  38. Müller, L.A.J., Kugler, K.G., Dander, A., Graber, A., Dehmer, M.: QuACN—an R package for analyzing complex biological networks quantitatively. Bioinformatics 27(1), 140–144 (2011)

    Article  Google Scholar 

  39. Presa, J.L.L.: Efficient algorithms for graph isomorphism testing. Ph.D. thesis, Department of Computer Science, Universidad Rey Juan Carlos, Madrid, Spain (2009)

  40. R, software: A language and environment for statistical computing. R Development Core Team, Foundation for Statistical Computing, Vienna, Austria. www.r-project.org (2011)

  41. Randić, M.: On characterization of molecular branching. J. Am. Chem. Soc. 97, 6609–6615 (1975)

    Article  Google Scholar 

  42. Randić, M., DeAlba, L.M., Harris, F.E.: Graphs with the same detour matrix. Croat. Chem. Acta 71, 53–68 (1998)

    Google Scholar 

  43. Randić, M., Vracko, M., Novic, M.: Eigenvalues as molecular descriptors. In: Diudea, M.V. (ed.) QSPR/QSAR Studies by Molecular Descriptors, pp. 93–120. Nova Publishing, Huntington, NY, USA (2001)

    Google Scholar 

  44. Raychaudhury, C., Ray, S.K., Ghosh, J.J., Roy, A.B., Basak, S.C.: Discrimination of isomeric structures using information theoretic topological indices. J. Comput. Chem. 5, 581–588 (1984)

    Article  Google Scholar 

  45. Read, R., Corneil, D.: The graph isomorphism disease. J. Graph Theory 1, 339–363 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  46. Solé, R.V., Valverde, S.: Information theory of complex networks: On evolution and architectural constraints. In: Lecture Notes in Physics, vol. 650, pp. 189–207 (2004)

  47. Toda, S.: Graph isomorphism: its complexity and algorithms (abstract). In: Rangan, C.P., Raman, V., Ramanujam, R. (eds.) FSTTCS, Foundations of Software Technology and Theoretical Computer Science, 19th Conference, Chennai, India, 13–15 Dec 1999, Proceedings, Lecture Notes in Computer Science, vol. 1738, p. 341. Springer (1999)

  48. Todeschini, R., Consonni, V., Mannhold, R.: Handbook of Molecular Descriptors. Wiley-VCH, Weinheim, Germany (2002)

    Google Scholar 

  49. Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23(1), 31–42 (1976)

    Article  MathSciNet  Google Scholar 

  50. Zemlyachenko, V.N., Korneenko, N.M., Tyshkevich, R.I.: Graph isomorphism problem. J. Math. Sci. 29, 1426–1481 (1985)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Dehmer.

Additional information

Research was sponsored by the U.S. Army Research Laboratory and the U.K Ministry of Defense and was accomplished under Agreement Number W911NF-06-3-0001. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the U.S Army Research Laboratory, the U.S. Government, the U.K. Ministry of Defense or the U.K Government. The U.S. and U.K. Governments are authorized to reproduce and distribute for Government purposes notwithstanding any copyright notation hereon. Matthias Dehmer and Martin Grabner thanks the Austrian Science Funds for supporting this work (project P22029-N13). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dehmer, M., Grabner, M., Mowshowitz, A. et al. An efficient heuristic approach to detecting graph isomorphism based on combinations of highly discriminating invariants. Adv Comput Math 39, 311–325 (2013). https://doi.org/10.1007/s10444-012-9281-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-012-9281-0

Keywords

Mathematics Subject Classifications (2010)