Abstract
Boundary integral equations and Nyström discretization provide a powerful tool for the solution of Laplace and Helmholtz boundary value problems. However, often a weakly-singular kernel arises, in which case specialized quadratures that modify the matrix entries near the diagonal are needed to reach a high accuracy. We describe the construction of four different quadratures which handle logarithmically-singular kernels. Only smooth boundaries are considered, but some of the techniques extend straightforwardly to the case of corners. Three are modifications of the global periodic trapezoid rule, due to Kapur–Rokhlin, to Alpert, and to Kress. The fourth is a modification to a quadrature based on Gauss–Legendre panels due to Kolm–Rokhlin; this formulation allows adaptivity. We compare in numerical experiments the convergence of the four schemes in various settings, including low- and high-frequency planar Helmholtz problems, and 3D axisymmetric Laplace problems. We also find striking differences in performance in an iterative setting. We summarize the relative advantages of the schemes.
Similar content being viewed by others
References
Alpert, B.K.: Hybrid gauss-trapezoidal quadrature rules. SIAM J. Sci. Comput. 20, 1551–1584 (1999)
Atkinson, K.E.: The Numerical Solution of Integral Equations of the Second Kind. Cambridge University Press, Cambridge (1997)
Barnes, J., Hut, P.: A hierarchical O(N log N) force-calculation algorithm. Nature 324 (1986)
Bremer, J.: A fast direct solver for the integral equations of scattering theory on planar curves with corners. J. Comput. Phys. 231, 1879–1899 (2012)
Bremer, J., Rokhlin, V.: Efficient discretization of Laplace boundary integral equations on polygonal domains. J. Comput. Phys. 229, 2507–2525 (2010)
Bremer, J., Rokhlin, V., Sammis, I.: Universal quadratures for boundary integral equations on two-dimensional domains with corners. J. Comput. Phys. 229, 8259–8280 (2010)
Cheng, H., Rokhlin, V., Yarvin, N.: Nonlinear optimization, quadrature, and interpolation. SIAM J. Optim. 9, 901–923 (1999)
Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, vol. 93, 2nd edn.Applied Mathematical Sciences. Springer-Verlag, Berlin (1998)
Driscoll, T.A., Toh, K.-C., Trefethen, L.N.: From potential theory to matrix iteration in six steps. SIAM Rev. 40, 547–578 (1998)
Duan, Z.-H., Krasny, R.: An adaptive treecode for computing nonbonded potential energy in classical molecular systems. J. Comput. Chem. 22, 184–195 (2001)
Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73, 325–348 (1987)
Hao, S., Barnett, A., Martinsson, P.: Nyström Quadratures for BIEs with Weakly Singular Kernels on 1D Domains (2012). http://amath.colorado.edu/faculty/martinss/Nystrom/
Helsing, J.: Integral equation methods for elliptic problems with boundary conditions of mixed type. J. Comput. Phys. 228, 8892–8907 (2009)
Helsing, J.: Solving Integral Equations on Piecewise Smooth Boundaries Using the RCIP Method: A Tutorial, p. 34. (2012,preprint) arXiv:1207.6737v3
Helsing, J., Karlsson, A.: An Accurate Boundary Value Problem Solver Applied to Scattering from Cylinders with Corners (2012). arXiv:1211.2467
Helsing, J., Ojala, R.: Corner singularities for elliptic problems: integral equations, graded meshes, quadrature, and compressed inverse preconditioning. J. Comput. Phys. 227, 8820–8840 (2008)
Kapur, S., Rokhlin, V.: High-order corrected trapezoidal quadrature rules for singular functions. SIAM J. Numer. Anal. 34, 1331–1356 (1997)
Klöckner, A., Barnett, A.H., Greengard, L., O’Neil, M.: Quadrature by Expansion: A New Method for the Evaluation of Layer Potentials. J. Comput. Phys. (2012). In press
Kolm, P., Rokhlin, V.: Numerical quadratures for singular and hypersingular integrals. Comput. Math. Appl. 41, 327–352 (2001)
Kress, R.: On constant-alpha force-free fields in a torus. J. Eng. Math. 20, 323–344 (1986)
Kress, R.: Boundary integral equations in time-harmonic acoustic scattering. Math. Comput. Model. 15, 229–243 (1991)
Kress, R.: Linear Integral Equations, vol. 82 of Applied Mathematical Sciences, 2nd edn. Springer (1999)
Martensen, E.: Über eine methode zum räumlichen neumannschen problem mit einer anwendung für torusartige berandungen. Acta Math. 109, 75–135 (1963)
Martinsson, P., Rokhlin, V.: A fast direct solver for boundary integral equations in two dimensions. J. Comput. Phys. 205, 1–23 (2004)
Nyström, E.: Über die praktische Auflösung von Integralgleichungen mit Andwendungen aug Randwertaufgaben. Acta Math. 54, 185–204 (1930)
Ojala, R.: Towards an all-embracing elliptic solver in 2D. PhD thesis, Department of Mathematics, Lund University, Sweden (2011)
Saad, Y.: Iterative Methods for Sparse Linear Systems. Society for industrial and applied mathematics, 2nd edn. (2003)
Trefethen, L.N.: Spectral Methods in MATLAB, vol. 10 of Software, Environments, and Tools, Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2000)
Trefethen, L.N.: Approximation Theory and Approximation Practice, SIAM (2012). http://www.maths.ox.ac.uk/chebfun/ATAP
Ying, L., Biros, G., Zorin, D.: A kernel-independent adaptive fast multipole method in two and three dimensions. J. Comput. Phys. 196, 591–626 (2004)
Young, P.M., Hao, S., Martinsson, P.G.: A high-order Nyström discretization scheme for boundary integral equations defined on rotationally symmetric surfaces. J. Comput. Phys. 231, 4142–4159 (2012)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by: Zydrunas Gimbutas
Rights and permissions
About this article
Cite this article
Hao, S., Barnett, A.H., Martinsson, P.G. et al. High-order accurate methods for Nyström discretization of integral equations on smooth curves in the plane. Adv Comput Math 40, 245–272 (2014). https://doi.org/10.1007/s10444-013-9306-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10444-013-9306-3
Keywords
- Boundary integral equation
- Nyström discretization
- Kress quadrature rule
- Alpert quadrature rule
- Kolm-Rokhlin quadrature rule
- Kapur-Rokhlin quadrature rule