Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Data-driven combined state and parameter reduction for inverse problems

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this contribution we present an accelerated optimization-based approach for combined state and parameter reduction of a parametrized forward model, which is used to construct a surrogate model in a Bayesian inverse problem setting. Following the ideas presented in Lieberman et al. (SIAM J. Sci. Comput. 32(5), 2523–2542, 2010), our approach is based on a generalized data-driven optimization functional in the construction process of the reduced order model and the usage of a Monte-Carlo basis enrichment strategy that results in an additional speed-up of the overall method. In principal, the model reduction procedure is based on the offline construction of appropriate low-dimensional state and parameter spaces and an online inversion step using the resulting surrogate model that is obtained through projection of the underlying forward model onto the reduced spaces. The generalizations and enhancements presented in this work are shown to decrease overall computational time and thus allow an application to large-scale problems. Numerical experiments for a generic model and a fMRI connectivity model are presented in order to compare the computational efficiency of our improved method with the original approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Friston, K.J., Harrison, L., Penny, W.: Dynamic causal modelling. Neuroimage 19(4), 1273–1302 (2003)

    Article  Google Scholar 

  2. Moran, R.J., Kiebel, S.J., Stephan, K.E., Reilly, R.B., Daunizeau, J., Friston, K.J.: A neural mass model of spectral responses in electrophysiology. NeuroImage 37(3), 706–720 (2007)

    Article  Google Scholar 

  3. Stephan, K.E., Friston, K.J.: Models of effective connectivity in neural systems. In: Jirsa, V.K., McIntosh, A.R. (eds.) Handbook of Brain Connectivity, Understanding Complex Systems, pp 303–327. Springer, Berlin Heidelberg (2007)

  4. Stuart, A.W.: Inverse problems: A Bayesian perspective. Acta Numer. 19(1), 451–559 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Biegler, L., Biros, G., Ghattas, O., Heinkenschloss, M., Keyes, D., Mallick, B., Tenorio, L., Waanders, B., Willcox, K., Marzouk, Y.: Large-scale inverse problems and quantification of uncertainty. Wiley Series in Computational Statistics. Wiley (2011)

  6. Weile, S., Michielssen, E., Grimme, E., Gallivan, K.: A method for generating rational interpolant reduced order models of two- parameter linear systems. Appl. Math. Lett. 12(5), 93–102 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Feng, L., Benner, P.: A robust algorithm for parametric model order reduction. In: PAMM, vol. 7(1), pp. 1021501–1021502 (2007)

  8. Baur, U., Benner, P.: Parametrische Modellreduktion mit dünnen Gittern. In: GMA-Fachausschuss 1.30, Modellbildung, Identifizierung und Simulation in der Automatisierungstechnik, Salzburg (2008)

  9. Lohmann, B., Eid, R.: Efficient order reduction of parametric and nonlinear models by superposition of locally reduced models. In: Methoden und Anwendungen der Regelungstechnik. Erlangen-Münchener Workshops 2007 und 2008. Shaker Verlag, Aachen (2009)

  10. Eid, R., Castañé-Selga, R., Panzer, H., Wolf, T., Lohmann, B.: Stability-preserving parametric model reduction by matrix interpolation. Math. Comp. Model. Dyn. 17(4), 319–335 (2011)

    Article  MATH  Google Scholar 

  11. Amsallem, D., Farhat, C.: An online method for interpolating linear parametric reduced-order models. SIAM J. Sci. Comput. 33(5), 2169–2198 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Haasdonk, B., Ohlberger, M.: Reduced basis method for finite volume approximations of parametrized linear evolution equations. M2AN 42(2), 277–302 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Haasdonk, B.: Convergence rates of the POD-greedy method. M2AN 47(3), 859–873 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  14. Haasdonk, B., Ohlberger, M.: Efficient reduced models and a posteriori error estimation for parametrized dynamical systems by offline/online decomposition. Math. Comp. Model. Dyn. 17(2), 145–161 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Nguyen, N.C., Rozza, G., Huynh, D.B.P., Patera, A.T.: Reduced basis approximation and a posteriori error estimation for parametrized parabolic PDEs: application to real-time Bayesian parameter estimation. In: Large-Scale Inverse Problems and Quantification of Uncertainty, Wiley Ser. Comput. Stat., pp. 151–178. Wiley (2010)

  16. Himpe, C., Ohlberger, M.: Cross-Gramian based combined state and parameter reduction for large-scale control systems. Math. Problem Eng. 2014, 1–13 (2014)

    Article  MathSciNet  Google Scholar 

  17. Lieberman, C., Willcox, K., Ghattas, O.: Parameter and state model reduction for large-scale statistical inverse problems. SIAM J. Sci. Comput. 32(5), 2523–2542 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. Bui-Thanh, T., Willcox, K., Ghattas, O., van Bloemen Waanders, B.: Goal-oriented, model-constrained optimization for reduction of large-scale systems. J. Comput. Phys. 224(2), 880–896 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Bui-Thanh, T., Willcox, K., Ghattas, O.: Model reduction for large-scale systems with high-dimensional parametric input space. SIAM J. Sci. Comput. 30(6), 3270–3288 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Bui-Thanh, T., Burstedde, C., Ghattas, O., Martin, J., Stadler, G., Wilcox, L.C.: Extreme-scale UQ for Bayesian inverse problems governed by PDEs. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, pp. 1–11 (2012)

  21. Bashir, O., Willcox, K., Ghattas, O., van Bloemen Waanders, B., Hill, J.: Hessian-based model reduction for large-scale systems with initial-condition inputs. Int. J. Numer. Meth. Engng. 73(6), 844–868 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Flath, H.P., Wilcox, L.C., Akcelik, V., Hill, J., van Bloemen Waanders, B., Ghattas, O.: Fast algorithms for Bayesian uncertainty quantification in large-scale linear inverse problems based on low-rank partial Hessian approximations. SIAM J. Sci. Comput. 33(1), 407–432 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lieberman, C., Willcox, K.: Goal-oriented inference: Approach, linear theory, and application to advection diffusion. SIAM J. Sci. Comput. 34(4), A1880–A1904 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  24. Lieberman, C., Van Bloemen Waanders, B: Hessian-based model reduction approach to solving large-scale source inversion problems. In: CSRI Summer Proceedings 2007, pp. 37–48 (2007)

  25. Martin, A., Grepl, Krcher, M.: Reduced basis a posteriori error bounds for parametrized linear-quadratic elliptic optimal control problems. Comptes Rendus Mathematique 349(15–16), 873–877 (2011)

    MATH  Google Scholar 

  26. Himpe, C.: {optmor} - optimization-based model order reduction (Version 1.2). doi:10.5281/zenodo.17796 (2014)

  27. Octave Community. GNU Octave 3.8. http://www.gnu.org/software/octave (2014)

  28. MATLAB. The MathWorks Inc., Natick, Massachusetts (2014)

  29. Kamrani, E., Foroushani, A., Vaziripour, M., Sawan, M.: Detecting the stable, observable and controllable states of the human brain dynamics. OJMI 2(4), 128–136 (2012)

    Article  Google Scholar 

  30. Galbally, D., Fidkowski, K., Willcox, K., Ghattas, O.: Non-linear model reduction for uncertainty quantification in large-scale inverse problems. Int. J. Numer. Meth. Engng. 81(12), 1581–1608 (2010)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Himpe.

Additional information

Communicated by: Karsten Urban

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Himpe, C., Ohlberger, M. Data-driven combined state and parameter reduction for inverse problems. Adv Comput Math 41, 1343–1364 (2015). https://doi.org/10.1007/s10444-015-9420-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-015-9420-5

Keywords

Mathematics Subject Classifications (2010)