Abstract
In this contribution, we are concerned with tight a posteriori error estimation for projection-based model order reduction of \(\inf \)-\(\sup \) stable parameterized variational problems. In particular, we consider the Reduced Basis Method in a Petrov-Galerkin framework, where the reduced approximation spaces are constructed by the (weak) greedy algorithm. We propose and analyze a hierarchical a posteriori error estimator which evaluates the difference of two reduced approximations of different accuracy. Based on the a priori error analysis of the (weak) greedy algorithm, it is expected that the hierarchical error estimator is sharp with efficiency index close to one, if the Kolmogorov N-with decays fast for the underlying problem and if a suitable saturation assumption for the reduced approximation is satisfied. We investigate the tightness of the hierarchical a posteriori estimator both from a theoretical and numerical perspective. For the respective approximation with higher accuracy, we study and compare basis enrichment of Lagrange- and Taylor-type reduced bases. Numerical experiments indicate the efficiency for both, the construction of a reduced basis using the hierarchical error estimator in a greedy algorithm, and for tight online certification of reduced approximations. This is particularly relevant in cases where the \(\inf \)-\(\sup \) constant may become small depending on the parameter. In such cases, a standard residual-based error estimator—complemented by the successive constrained method to compute a lower bound of the parameter dependent \(\inf \)-\(\sup \) constant—may become infeasible.
Similar content being viewed by others
References
Ali, M., Steih, K., Urban, K.: Reduced basis methods with adaptive snapshot computations. Adv. Comput. Math. 43(2), 257-294 (2016)
Babuška, I.M., Sauter, S.A.: Is the pollution effect of the FEM avoidable for the helmholtz equation considering high wave numbers? SIAM J. Numer. Anal. 34 (6), 2392–2423 (1997)
Bank, R.E., Smith, R.K.: A posteriori error estimates based on hierarchical bases. SIAM J. Numer Anal. 30(4), 921–935 (1993)
Barrault, M., Maday, Y., Nguyen, N.C., Patera, A.T.: An ‘Empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. C.R. Acad. Sci. Math. 339(9), 667–672 (2004)
Binev, P., Cohen, A., Dahmen, W., DeVore, R., Petrova, G., Wojtaszczyk, P.: Convergence rates for greedy algorithms in reduced basis methods. SIAM J. Math. Anal. 43(3), 1457–1472 (2011)
Brunken, J., Smetana, K., Urban, K.: (Parametrized) first order transport equations: realization of optimally stable Petrov-Galerkin methods. SIAM J. Sci. Comput. 41(1), A592–A621 ArXiv e-prints (2018)
Buffa, A., Maday, Y., Patera, A.T., Prud’homme, C., Turinici, G.: A priori convergence of the greedy algorithm for the parametrized reduced basis method. ESAIM Math. Model. Numer Anal. 46(3), 595–603 (2012)
Buhr, A., Engwer, C., Ohlberger, M., Rave, S.: A numerically stable a posteriori error estimator for reduced basis approximations of elliptic equations. In: 11th World Congress on Computational Mechanics, WCCM 2014, 5th European Conference on Computational Mechanics, ECCM 2014 and 6th European Conference on Computational Fluid Dynamics, ECFD 2014, pp 4094–4102 (2014)
Canuto, C., Tonn, T., Urban, K: A posteriori error analysis of the reduced basis method for nonaffine parametrized nonlinear PDEs. SIAM J. Numer Anal. 47 (3), 2001–2022 (2009)
Chen, Y., Hesthaven, J.S., Maday, Y., Rodríguez, J.: A monotonic evaluation of lower bounds for inf-sup stability constants in the frame of reduced basis approximations. C.R. Acad. Sci. Math. 346(23), 1295–1300 (2008)
Chen, Y., Hesthaven, J.S., Maday, Y., Rodríguez, J.: Improved successive constraint method based a posteriori error estimate for reduced basis approximation of 2D Maxwell’s problem. ESAIM Math. Model. Numer Anal. 43(6), 1099–1116 (2009)
Cho, J.R., Oden, J.T.: A priori modeling error estimates of hierarchical models for elasticity problems for plate- and shell-like structures. Math. Comput. Modelling 23(10), 117–133 (1996)
Cohen, A., DeVore, R.: Kolmogorov widths under holomorphic mappings. IMA J. Numer. Anal. 36(1), 1–12 (2016)
Dinkelbach, W.: On nonlinear fractional programming. Manag. Sci. 13(7), 492–498 (1967)
Domínguez, C., Stephan, E.P., Maischak, M.: A FE-BE coupling for a fluid-structure interaction problem: hierarchical a posteriori error estimates. Numer. Methods Partial Differential Equations 28(5), 1417–1439 (2012)
Drohmann, M., Carlberg, K.: The ROMES method for statistical modeling of reduced-order-model error. SIAM/ASA J. Uncertain. Quantif. 3(1), 116–145 (2015)
Drohmann, M., Haasdonk, B., Ohlberger, M.: Reduced basis approximation for nonlinear parametrized evolution equations based on empirical operator interpolation. SIAM J. Sci. Comput. 34(2), A937–A969 (2012)
Eftang, J.L., Patera, A.T., Rønquist, E.M.: An ‘hp’ certified reduced basis method for parametrized elliptic partial differential equations. SIAM J. Sci. Comput. 32(6), 3170–3200 (2010)
Esterhazy, S., Melenk, J.M.: On Stability of discretizations of the Helmholtz equation, vol. 83. In: Lecture Notes in Computational Science and Engineering, pp 285–324. Springer, Heidelberg (2012)
Feinauer, J., Hein, S., Rave, S., Schmidt, S., Westhoff, D., Zausch, J., Iliev, O., Latz, A., Ohlberger, M., Schmidt, V.: MULTIBAT: unified workflow for fast electrochemical 3D simulations of lithium-ion cells combining virtual stochastic microstructures, Electrochemical Degradation Models and Model Order Reduction. arXiv:1704.04139 (2017)
Glas, S., Patera, A., Urban, K.: Reduced basis methods for the wave equation. Unpublished manuscript (2018)
Haasdonk, B.: Reduced basis methods for parametrized PDEs — a tutorial. In: Benner, P., Cohen, A., Ohlberger, M., Willcox, K. (eds.) Model reduction and approximation, chapter 2, pp 65–136. SIAM, Philadelphia (2017)
Haasdonk, B., Dihlmann, M., Ohlberger, M.: A training set and multiple bases generation approach for parameterized model reduction based on adaptive grids in parameter space. Math. Comput. Model. Dyn. Syst. 17(4), 423–442 (2011)
Hesthaven, J.S., Rozza, G., Stamm, B.: Certified reduced basis methods for parametrized partial differential equations. Springer, Cham (2016)
Hesthaven, J.S., Stamm, B., Zhang, S.: Certified reduced basis method for the electric field integral equation. SIAM J. Sci. Comput. 34(3), A1777–A1799 (2012)
Huang, Y., Wei, H., Yang, W., Yi, N.: A new a posteriori error estimate for adaptive finite element methods, pp 63–74. Springer, Berlin (2011)
Huynh, D.B.P., Rozza, G., Sen, S., Patera, A.T.: A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants. C.R. Acad. Sci. Math. 345(8), 473–478 (2007)
Ihlenburg, F., Babuška, I.: Finite element solution of the Helmholtz equation with high wave number part: I the h-version of the FEM. Comp. Math. Appl. 30(9), 9–37 (1995)
Ihlenburg, F., Babuška, I.: Finite element solution of the Helmholtz equation with high wave number part: II the h-p version of the FEM. SIAM J. Numer. Anal. 34(1), 315–358 (1997)
Ohlberger, M., Rave, S.: Reduced basis methods: success, limitations and future challenges. In: Proceedings of the Conference Algoritmy, pp 1–12 (2016)
Ohlberger, M., Rave, S., Schindler, F.: True error control for the localized reduced basis method for parabolic problems. In: Model Reduction of Parametrized Systems, pp 169–182. Springer, Cham (2017)
Ohlberger, M., Schindler, F.: Error control for the localized reduced basis multiscale method with adaptive on-line enrichment. SIAM J. Sci. Comput. 37(6), A2865–A2895 (2015)
Patera, A., Rozza, G.: Reduced basis approximation and a posteriori error estimation for parametrized partial differential equations. MIT, Cambridge (2006). Version 1.0
Prince, P.J., Dormand, J.R.: High order embedded Runge-Kutta formulae. J. Comput. Appl. Math. 7(1), 67–75 (1981)
Quarteroni, A., Manzoni, A., Negri, F.: Reduced basis methods for partial differential equations: an introduction. Springer, Cham (2016)
Schwab, C., Stevenson, R.: Space-time adaptive wavelet methods for parabolic evolution problems. Math. Comput. 78(267), 1293–1318 (2009)
Urban, K., Patera, A.T.: An improved error bound for reduced basis approximation of linear parabolic problems. Math. Comput. 83(288), 1599–1615 (2014)
Urban, K., Volkwein, S., Zeeb, O.: Greedy sampling using nonlinear optimization. In: Reduced Order Methods For Modeling And Computational Reduction, pp 137–157. Springer, Cham (2014)
Wohlmuth, B.I.: Hierarchical a posteriori error estimators for mortar finite element methods with lagrange multipliers. SIAM J. Numer. Anal. 36(5), 1636–1658 (1999)
Yano, M.: A reduced basis method with exact-solution certificates for steady symmetric coercive equations. Comput. Methods Appl. Mech. Eng. 287, 290–309 (2015)
Yano, M.: A minimum-residual mixed reduced basis method: exact residual certification and simultaneous finite-element reduced-basis refinement. ESAIM Math. Model. Numer. Anal. 50(1), 163–185 (2016)
Zienkiewicz, O.C., Kelly, D.W., Gago, J., Babuška, I.: Hierarchical finite element approaches, error estimates and adaptive refinement. In: The Mathematics of Finite Elements and Applications, IV (Uxbridge, 1981), pp 313–346. Academic Press, London (1982)
Zou, Q., Veeser, A., Kornhuber, R., Gräser C.: Hierarchical error estimates for the energy functional in obstacle problems. Numer Math. 117(4), 653–677 (2011)
Funding
M.R. was supported by the European Union within the EU-MORNet project.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by: Anthony Nouy
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Hain, S., Ohlberger, M., Radic, M. et al. A hierarchical a posteriori error estimator for the Reduced Basis Method. Adv Comput Math 45, 2191–2214 (2019). https://doi.org/10.1007/s10444-019-09675-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10444-019-09675-z