Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

A hierarchical a posteriori error estimator for the Reduced Basis Method

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this contribution, we are concerned with tight a posteriori error estimation for projection-based model order reduction of \(\inf \)-\(\sup \) stable parameterized variational problems. In particular, we consider the Reduced Basis Method in a Petrov-Galerkin framework, where the reduced approximation spaces are constructed by the (weak) greedy algorithm. We propose and analyze a hierarchical a posteriori error estimator which evaluates the difference of two reduced approximations of different accuracy. Based on the a priori error analysis of the (weak) greedy algorithm, it is expected that the hierarchical error estimator is sharp with efficiency index close to one, if the Kolmogorov N-with decays fast for the underlying problem and if a suitable saturation assumption for the reduced approximation is satisfied. We investigate the tightness of the hierarchical a posteriori estimator both from a theoretical and numerical perspective. For the respective approximation with higher accuracy, we study and compare basis enrichment of Lagrange- and Taylor-type reduced bases. Numerical experiments indicate the efficiency for both, the construction of a reduced basis using the hierarchical error estimator in a greedy algorithm, and for tight online certification of reduced approximations. This is particularly relevant in cases where the \(\inf \)-\(\sup \) constant may become small depending on the parameter. In such cases, a standard residual-based error estimator—complemented by the successive constrained method to compute a lower bound of the parameter dependent \(\inf \)-\(\sup \) constant—may become infeasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ali, M., Steih, K., Urban, K.: Reduced basis methods with adaptive snapshot computations. Adv. Comput. Math. 43(2), 257-294 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Babuška, I.M., Sauter, S.A.: Is the pollution effect of the FEM avoidable for the helmholtz equation considering high wave numbers? SIAM J. Numer. Anal. 34 (6), 2392–2423 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bank, R.E., Smith, R.K.: A posteriori error estimates based on hierarchical bases. SIAM J. Numer Anal. 30(4), 921–935 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barrault, M., Maday, Y., Nguyen, N.C., Patera, A.T.: An ‘Empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. C.R. Acad. Sci. Math. 339(9), 667–672 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Binev, P., Cohen, A., Dahmen, W., DeVore, R., Petrova, G., Wojtaszczyk, P.: Convergence rates for greedy algorithms in reduced basis methods. SIAM J. Math. Anal. 43(3), 1457–1472 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brunken, J., Smetana, K., Urban, K.: (Parametrized) first order transport equations: realization of optimally stable Petrov-Galerkin methods. SIAM J. Sci. Comput. 41(1), A592–A621 ArXiv e-prints (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Buffa, A., Maday, Y., Patera, A.T., Prud’homme, C., Turinici, G.: A priori convergence of the greedy algorithm for the parametrized reduced basis method. ESAIM Math. Model. Numer Anal. 46(3), 595–603 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Buhr, A., Engwer, C., Ohlberger, M., Rave, S.: A numerically stable a posteriori error estimator for reduced basis approximations of elliptic equations. In: 11th World Congress on Computational Mechanics, WCCM 2014, 5th European Conference on Computational Mechanics, ECCM 2014 and 6th European Conference on Computational Fluid Dynamics, ECFD 2014, pp 4094–4102 (2014)

  9. Canuto, C., Tonn, T., Urban, K: A posteriori error analysis of the reduced basis method for nonaffine parametrized nonlinear PDEs. SIAM J. Numer Anal. 47 (3), 2001–2022 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, Y., Hesthaven, J.S., Maday, Y., Rodríguez, J.: A monotonic evaluation of lower bounds for inf-sup stability constants in the frame of reduced basis approximations. C.R. Acad. Sci. Math. 346(23), 1295–1300 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, Y., Hesthaven, J.S., Maday, Y., Rodríguez, J.: Improved successive constraint method based a posteriori error estimate for reduced basis approximation of 2D Maxwell’s problem. ESAIM Math. Model. Numer Anal. 43(6), 1099–1116 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cho, J.R., Oden, J.T.: A priori modeling error estimates of hierarchical models for elasticity problems for plate- and shell-like structures. Math. Comput. Modelling 23(10), 117–133 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cohen, A., DeVore, R.: Kolmogorov widths under holomorphic mappings. IMA J. Numer. Anal. 36(1), 1–12 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Dinkelbach, W.: On nonlinear fractional programming. Manag. Sci. 13(7), 492–498 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  15. Domínguez, C., Stephan, E.P., Maischak, M.: A FE-BE coupling for a fluid-structure interaction problem: hierarchical a posteriori error estimates. Numer. Methods Partial Differential Equations 28(5), 1417–1439 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Drohmann, M., Carlberg, K.: The ROMES method for statistical modeling of reduced-order-model error. SIAM/ASA J. Uncertain. Quantif. 3(1), 116–145 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Drohmann, M., Haasdonk, B., Ohlberger, M.: Reduced basis approximation for nonlinear parametrized evolution equations based on empirical operator interpolation. SIAM J. Sci. Comput. 34(2), A937–A969 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Eftang, J.L., Patera, A.T., Rønquist, E.M.: An ‘hp’ certified reduced basis method for parametrized elliptic partial differential equations. SIAM J. Sci. Comput. 32(6), 3170–3200 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Esterhazy, S., Melenk, J.M.: On Stability of discretizations of the Helmholtz equation, vol. 83. In: Lecture Notes in Computational Science and Engineering, pp 285–324. Springer, Heidelberg (2012)

    Google Scholar 

  20. Feinauer, J., Hein, S., Rave, S., Schmidt, S., Westhoff, D., Zausch, J., Iliev, O., Latz, A., Ohlberger, M., Schmidt, V.: MULTIBAT: unified workflow for fast electrochemical 3D simulations of lithium-ion cells combining virtual stochastic microstructures, Electrochemical Degradation Models and Model Order Reduction. arXiv:1704.04139 (2017)

  21. Glas, S., Patera, A., Urban, K.: Reduced basis methods for the wave equation. Unpublished manuscript (2018)

  22. Haasdonk, B.: Reduced basis methods for parametrized PDEs — a tutorial. In: Benner, P., Cohen, A., Ohlberger, M., Willcox, K. (eds.) Model reduction and approximation, chapter 2, pp 65–136. SIAM, Philadelphia (2017)

  23. Haasdonk, B., Dihlmann, M., Ohlberger, M.: A training set and multiple bases generation approach for parameterized model reduction based on adaptive grids in parameter space. Math. Comput. Model. Dyn. Syst. 17(4), 423–442 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hesthaven, J.S., Rozza, G., Stamm, B.: Certified reduced basis methods for parametrized partial differential equations. Springer, Cham (2016)

    Book  MATH  Google Scholar 

  25. Hesthaven, J.S., Stamm, B., Zhang, S.: Certified reduced basis method for the electric field integral equation. SIAM J. Sci. Comput. 34(3), A1777–A1799 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Huang, Y., Wei, H., Yang, W., Yi, N.: A new a posteriori error estimate for adaptive finite element methods, pp 63–74. Springer, Berlin (2011)

    MATH  Google Scholar 

  27. Huynh, D.B.P., Rozza, G., Sen, S., Patera, A.T.: A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants. C.R. Acad. Sci. Math. 345(8), 473–478 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ihlenburg, F., Babuška, I.: Finite element solution of the Helmholtz equation with high wave number part: I the h-version of the FEM. Comp. Math. Appl. 30(9), 9–37 (1995)

    Article  MATH  Google Scholar 

  29. Ihlenburg, F., Babuška, I.: Finite element solution of the Helmholtz equation with high wave number part: II the h-p version of the FEM. SIAM J. Numer. Anal. 34(1), 315–358 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ohlberger, M., Rave, S.: Reduced basis methods: success, limitations and future challenges. In: Proceedings of the Conference Algoritmy, pp 1–12 (2016)

  31. Ohlberger, M., Rave, S., Schindler, F.: True error control for the localized reduced basis method for parabolic problems. In: Model Reduction of Parametrized Systems, pp 169–182. Springer, Cham (2017)

    Chapter  Google Scholar 

  32. Ohlberger, M., Schindler, F.: Error control for the localized reduced basis multiscale method with adaptive on-line enrichment. SIAM J. Sci. Comput. 37(6), A2865–A2895 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Patera, A., Rozza, G.: Reduced basis approximation and a posteriori error estimation for parametrized partial differential equations. MIT, Cambridge (2006). Version 1.0

    Google Scholar 

  34. Prince, P.J., Dormand, J.R.: High order embedded Runge-Kutta formulae. J. Comput. Appl. Math. 7(1), 67–75 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  35. Quarteroni, A., Manzoni, A., Negri, F.: Reduced basis methods for partial differential equations: an introduction. Springer, Cham (2016)

    Book  MATH  Google Scholar 

  36. Schwab, C., Stevenson, R.: Space-time adaptive wavelet methods for parabolic evolution problems. Math. Comput. 78(267), 1293–1318 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Urban, K., Patera, A.T.: An improved error bound for reduced basis approximation of linear parabolic problems. Math. Comput. 83(288), 1599–1615 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Urban, K., Volkwein, S., Zeeb, O.: Greedy sampling using nonlinear optimization. In: Reduced Order Methods For Modeling And Computational Reduction, pp 137–157. Springer, Cham (2014)

    Google Scholar 

  39. Wohlmuth, B.I.: Hierarchical a posteriori error estimators for mortar finite element methods with lagrange multipliers. SIAM J. Numer. Anal. 36(5), 1636–1658 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yano, M.: A reduced basis method with exact-solution certificates for steady symmetric coercive equations. Comput. Methods Appl. Mech. Eng. 287, 290–309 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Yano, M.: A minimum-residual mixed reduced basis method: exact residual certification and simultaneous finite-element reduced-basis refinement. ESAIM Math. Model. Numer. Anal. 50(1), 163–185 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zienkiewicz, O.C., Kelly, D.W., Gago, J., Babuška, I.: Hierarchical finite element approaches, error estimates and adaptive refinement. In: The Mathematics of Finite Elements and Applications, IV (Uxbridge, 1981), pp 313–346. Academic Press, London (1982)

  43. Zou, Q., Veeser, A., Kornhuber, R., Gräser C.: Hierarchical error estimates for the energy functional in obstacle problems. Numer Math. 117(4), 653–677 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

M.R. was supported by the European Union within the EU-MORNet project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten Urban.

Additional information

Communicated by: Anthony Nouy

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hain, S., Ohlberger, M., Radic, M. et al. A hierarchical a posteriori error estimator for the Reduced Basis Method. Adv Comput Math 45, 2191–2214 (2019). https://doi.org/10.1007/s10444-019-09675-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-019-09675-z

Keywords

Mathematics Subject Classification (2010)