Abstract
In this article, we consider vibrational systems with semi-active damping that are described by a second-order model. In order to minimize the influence of external inputs to the system response, we are optimizing some damping values. As minimization criterion, we evaluate the energy response, that is the \(\mathcal {H}_2\)-norm of the corresponding transfer function of the system. Computing the energy response includes solving Lyapunov equations for different damping parameters. Hence, the minimization process leads to high computational costs if the system is of large dimension. We present two techniques that reduce the optimization problem by applying the reduced basis method to the corresponding parametric Lyapunov equations. In the first method, we determine a reduced solution space on which the Lyapunov equations and hence the resulting energy response values are computed approximately in a reasonable time. The second method includes the reduced basis method in the minimization process. To evaluate the quality of the approximations, we introduce error estimators that evaluate the error in the controllability Gramians and the energy response. Finally, we illustrate the advantages of our methods by applying them to two different examples.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Bartels, R.H., Stewart, G.W.: Solution of the matrix equation \({AX}+{XB}={C}\): Algorithm 432. Comm. ACM 15, 820–826 (1972). https://doi.org/10.1145/361573.361582
Beattie, C., Gugercin, S., Tomljanović, Z.: Sampling-free model reduction of systems with low-rank parameterization. Adv. Comput. Math. 46(6), 83 (2020). https://doi.org/10.1007/s10444-020-09825-8
Benner, P., Kürschner, P., Tomljanović, Z., Truhar, N.: Semi-active damping optimization of vibrational systems using the parametric dominant pole algorithm. Z. Angew. Math. Mech. 96(5), 604–619 (2016). https://doi.org/10.1002/zamm.201400158
Benner, P., Quintana-Ortí, E.S.: Solving stable generalized Lyapunov equations with the matrix sign function. Numer. Algorithms 20(1), 75–100 (1999). https://doi.org/10.1023/A:1019191431273
Benner, P., Tomljanović, Z., Truhar N.: Damping optimization for linear vibrating systems using dimension reduction. In: Náprstek, J., Horáček, J., Okrouhlík, M., Marvalová, B., Verhulst, F., Sawicki, J.T. (eds) Vibration Problems ICOVP 2011, volume 139, Part 5 of Springer Proceedings in Physics, pp. 297–305. Springer-Verlag, Prag, Czech Republic (2011). https://doi.org/10.1007/978-94-007-2069-5_41
Benner, P., Tomljanović, Z., Truhar, N.: Dimension reduction for damping optimization in linear vibrating systems. Z. Angew. Math. Mech. 91(3), 179–191 (2011). https://doi.org/10.1002/zamm.201000077
Benner, P., Tomljanović, Z., Truhar, N.: Optimal damping of selected eigenfrequencies using dimension reduction. Numer. Lin. Alg. Appl. 20(1), 1–17 (2013). https://doi.org/10.1002/nla.833
Chellappa, S., Feng, L., Benner, P.: A training set subsampling strategy for the reduced basis method. J. Sci. Comput. 89(63), 1–34 (2021). https://doi.org/10.1007/s10915-021-01665-y. Topical collection dedicated to the ICERM Spring 2020 semester program on model order reduction
Chellappa, S., Feng, L., de la Rubia, V., Benner, P.: Inf-sup-constant-free state error estimator for model order reduction of parametric systems in electromagnetics. math.NA. arXiv:2104.12802 (2021)
Denißen, J.: On Vibrational Analysis and Reduction for Damped Linear Systems. Dissertation, Otto-von-Guericke-Universität, Magdeburg, Germany (2019). https://doi.org/10.25673/14231
Dymarek, A., Dzitkowski, T.: The use of synthesis methods in position optimisation and selection of tuned mass damper (tmd) parameters for systems with many degrees of freedom. Archives of Control Sciences 31(1), 185–21 (2021). https://doi.org/10.24425/acs.2021.136886. LXVII
Eftang, J.L., Knezevic, D.J., Patera, A.T.: An hp certified reduced basis method for parametrized parabolic partial differential equations. Math. Comput. Model. Dyn. Syst. 17(4), 395–422 (2011)
Feng, L., Benner, P.: On error estimation for reduced-order modeling of linear non-parametric and parametric systems. ESAIM: Math. Model. Numer. Anal. 55(2), 561–594 (2021). https://doi.org/10.1051/m2an/2021001
Genta, G.: Vibration Dynamics and Control. Springer, Mechanical Engineering Series (2009)
Gugercin, S., Antoulas, A.C., Beattie, C.: \(\cal{H} _2\) model reduction for large-scale linear dynamical systems. SIAM J. Matrix Anal. Appl. 30(2), 609–638 (2008). https://doi.org/10.1137/060666123
Gürgöze, M., Müller, P.C.: Optimal positioning of dampers in multi-body systems. J. Sound Vib. 158, 517–530 (1992). https://doi.org/10.1016/0022-460X(92)90422-T
Hammarling, S.J.: Numerical solution of the stable, non-negative definite Lyapunov equation. IMA J. Numer. Anal. 2, 303–323 (1982)
Hesthaven, J.S., Rozza, G., Stamm, B.: Certified Reduced Basis Methods for Parametrized Partial Differential Equations. SpringerBriefs in Mathematics. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-22470-1
Hesthaven, J.S., Stamm, B., Zhang, S.: Efficient greedy algorithms for high-dimensional parameter spaces with applications to empirical interpolation and reduced basis methods. ESAIM: Math. Model. Numer. Anal. 48(1), 259–283 (2014). https://doi.org/10.1051/m2an/2013100
Inman, D.J.: Vibration with Control. John Wiley & Sons Ltd., Virginia Tech, USA (2006)
Jakovčević Stor, N., Mitchell, T., Tomljanović, Z., Ugrica, M.: Fast optimization of viscosities for frequency-weighted damping of second-order systems. E-print. math.NA. arXiv:2104.04035 (2021)
Kanno, Y.: Damper placement optimization in a shear building model withdiscrete design variables: a mixed-integer second-order coneprogramming approach. Earthquake Eng. Struct. Dyn. 42, 1657–1676 (2013). https://doi.org/10.1002/eqe.2292
Kanno, Y., Puvača, M., Tomljanović, Z., Truhar, N.: Optimization of damping positions in a mechanical system. Rad. Hrvat. Akad. Znan. Umjet. Mat. Znan. 23, 141–157 (2019). https://doi.org/10.21857/y26kec33q9
Kürschner, P.: Efficient Low-Rank Solution of Large-Scale Matrix Equations. Dissertation, Otto-von-Guericke-Universität, Magdeburg, Germany (2016). http://hdl.handle.net/11858/00-001M-0000-0029-CE18-2
Kuzmanović, I., Tomljanović, Z., Truhar, N.: Optimization of material with modal damping. Appl. Math. Comput. 218(13), 7326–7338 (2012). https://doi.org/10.1016/j.amc.2012.01.011
Müller, P.C., Schiehlen, W.O.: Linear vibrations: A theoretical treatment of multi-degree-of-freedom vibrating systems. Martinus Hijhoff publishers (1985)
Paz, M., Kim, Y.H.: Structural Dynamics: Theory and Computation. Springer (2018)
Penzl, T.: A cyclic low rank Smith method for large sparse Lyapunov equations. SIAM J. Sci. Comput. 21(4), 1401–1418 (2000). https://doi.org/10.1137/S1064827598347666
Przybilla, J., Pontes Duff, I., Benner, P.: Model reduction for second-order systems with inhomogeneous initial conditions. Syst. Control Lett. 183, (2024). https://doi.org/10.1016/j.sysconle.2023.105671
Przybilla, J., Voigt, M.: Model reduction of parametric differential-algebraic systems by balanced truncation. E-print. math.DS. arXiv:2108.08646 (2021)
Quarteroni, A., Manzoni, A., Negri, F.: Reduced Basis Methods for Partial Differential Equations, volume 92 of La Matematica per il 3+2. Springer International Publishing (2016). ISBN: 978-3-319-15430-5
Roberts, J.D.: Linear model reduction and solution of the algebraic Riccati equation by use of the sign function. Internat. J. Control 32(4), 677–687 (1980). https://doi.org/10.1080/00207178008922881. (Reprint of Technical Report No. TR-13, CUED/B-Control, Cambridge University, Engineering Department, 1971)
Rozza, G., Huynh, D.B.P., Patera, A.T.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Methods Eng. 15(3), 229–275 (2008). https://doi.org/10.1007/s11831-008-9019-9
Schmidt, A., Haasdonk, B.: Reduced basis approximation of large scale algebraic Riccati equations. Technical report, University of Stuttgart. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=999 (2015)
Simoncini, V., Druskin, V.: Convergence analysis of projection methods for the numerical solution of large Lyapunov equations. SIAM J. Numer. Anal. 47(2), 828–843 (2009). https://doi.org/10.1137/070699378
Son, N.T., Stykel, T.: Solving parameter-dependent Lyapunov equations using the reduced basis method with application to parametric model order reduction. SIAM J. Matrix Anal. Appl. 38(2), 478–504 (2017). https://doi.org/10.1137/15M1027097
Takewaki, I.: Optimal damper placement for minimum transfer functions. Earthquake Eng. Struct. Dyn. 26, 1113–1997 (1997). https://doi.org/10.1002/(SICI)1096-9845(199711)26:11<1113::AID-EQE696>3.0.CO;2-X
Tomljanović, Z.: Optimal damping for vibrating systems using dimension reduction. PhD thesis, Josip Juraj Strossmayer University of Osijek. https://hrcak.srce.hr/68645 (2011)
Tomljanović, Z., Beattie, C., Gugercin, S.: Damping optimization of parameter dependent mechanical systems by rational interpolation. Adv. Comput. Math. 44(6), 1797–1820 (2018). https://doi.org/10.1007/s10444-018-9605-9
Tomljanović, Z., Voigt, M.: Semi-active \(\cal{H} _\infty \) damping optimization by adaptive interpolation. Numer. Linear Alg. Appl. 27(4), e2300 (2020). https://doi.org/10.1002/nla.2300
Truhar, N.: An efficient algorithm for damper optimization for linear vibrating systems using Lyapunov equation. J. Comput. Appl. Math. 127, 169–182 (2004). https://doi.org/10.1016/j.cam.2004.02.005
Truhar, N., Veselić, K.: Bounds on the trace of a solution to the Lyapunov equation with a general stable matrix. Syst. Control Lett. 56(7–8), 493–503 (2007). https://doi.org/10.1016/j.sysconle.2007.02.003
Truhar, N., Veselić, K.: An efficient method for estimating the optimal dampers’ viscosity for linear vibrating systems using Lyapunov equation. SIAM J. Matrix Anal. Appl. 31(1), 18–39 (2009). https://doi.org/10.1137/070683052
Veroy, K., Patera, A.T.: Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-basis a posteriori error bounds. Int. J. Numer. Methods Fluids 47(8–9), 773–788 (2005)
Veroy, K., Prud’homme, C., Patera, A.T.: Reduced-basis approximation of the viscous Burgers equation: rigorous a posteriori error bounds. Comp. Rendus Math. Acad. Sci. Paris 337(9), 619–624 (2003). https://doi.org/10.1016/j.crma.2003.09.023
Veroy, K., Prud’Homme, C., Rovas, D.V., Patera, A.T.: A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations. In: 16th AIAA Computational Fluid Dynamics Conference, Orlando, United States (2003). https://hal.archives-ouvertes.fr/hal-01219051
Veselić, K.: Damped Oscillations of Linear Systems, volume 2023 of Lecture Notes in Math. Springer-Verlag (2011). https://doi.org/10.1007/978-3-642-21335-9
Zhou, K., Doyle, J.C., Glover, K.: Robust and Optimal Control. Prentice-Hall, Upper Saddle River, NJ (1996). https://doi.org/10.1007/978-1-4471-6257-5
Funding
Open Access funding enabled and organized by Projekt DEAL.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Communicated by: Tobias Breiten
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Przybilla, J., Pontes Duff, I. & Benner, P. Semi-active damping optimization of vibrational systems using the reduced basis method. Adv Comput Math 50, 56 (2024). https://doi.org/10.1007/s10444-024-10141-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10444-024-10141-8