Abstract
Multilevel Stein variational gradient descent is a method for particle-based variational inference that leverages hierarchies of surrogate target distributions with varying costs and fidelity to computationally speed up inference. The contribution of this work is twofold. First, an extension of a previous cost complexity analysis is presented that applies even when the exponential convergence rate of single-level Stein variational gradient descent depends on iteration-varying parameters. Second, multilevel Stein variational gradient descent is applied to a large-scale Bayesian inverse problem of inferring discretized basal sliding coefficient fields of the Arolla glacier ice. The numerical experiments demonstrate that the multilevel version achieves orders of magnitude speedups compared to its single-level version.
Similar content being viewed by others
References
Kaipio, J., Somersalo, E.: Statistical inverse problems: Discretization, model reduction, and inverse crimes. J. Comput. Appl. Math. 198(2), 493–504 (2007)
Stuart, A.M.: Inverse problems: A Bayesian perspective. Acta Numer. 19, 451–559 (2010)
Latz, J.: On the well-posedness of Bayesian inverse problems. SIAM/ASA Journal on Uncertainty Quantification 8(1), 451–482 (2020)
Liu, Q., Wang, D.: Stein variational gradient descent: A general purpose Bayesian inference algorithm. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 29, pp. 2378–2386 (2016)
Detommaso, G., Cui, T., Marzouk, Y., Spantini, A., Scheichl, R.: A Stein variational Newton method. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 31, pp. 9169–9179 (2018)
Duncan, A., Nüsken, N., Szpruch, L.: On the geometry of stein variational gradient descent. J. Mach. Learn. Res. 24(56), 1–39 (2023)
Wang, D., Tang, Z., Bajaj, C., Liu, Q.: Stein variational gradient descent with matrix-valued kernels. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32 (2019)
Cui, T., Law, K.J.H., Marzouk, Y.M.: Dimension-independent likelihood-informed MCMC. J. Comput. Phys. 304, 109–137 (2016)
Chen, P., Wu, K., Chen, J., Leary-Roseberry, T.O., Ghattas, O.: Projected Stein variational Newton: A fast and scalable Bayesian inference method in high dimensions. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 15130–15139 (2019)
Chen, P., Ghattas, O.: Stein variational reduced basis Bayesian inversion. SIAM J. Sci. Comput. 43(2), 1163–1193 (2021)
Liu, Q.: Stein variational gradient descent as gradient flow. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30, pp. 3115–3123 (2017)
Lu, J., Lu, Y., Nolen, J.: Scaling limit of the Stein variational gradient descent: The mean field regime. SIAM J. Math. Anal. 51(2), 648–671 (2019)
Chewi, S., Gouic, T.L., Lu, C., Maunu, T., Rigollet, P.: SVGD as a kernelized Wasserstein gradient flow of the chi-squared divergence. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33 (2020)
Korba, A., Salim, A., Arbel, M., Luise, G., Gretton, A.: A non-asymptotic analysis for Stein variational gradient descent. In: Advances in Neural Information Processing Systems, vol. 33 (2020)
Ba, J., Erdogdu, M., Ghassemi, M., Suzuki, T., Wu, D.: Towards characterizing the high-dimensional bias of kernel-based particle inference algorithms. In: 2nd Symposium on Advances in Approximate Bayesian Inference, pp. 1–17 (2019)
Alsup, T., Venturi, L., Peherestorfer, B.: Multilevel Stein variational gradient descent with applications to Bayesian inverse problems. In: Bruna, J., Hesthaven, J.S., Zdeborova, L. (eds.) Proceedings of Machine Learning Research. 2nd Annual Conference on Mathematical and Scientific Machine Learning, vol. 145, pp. 1–25 (2021)
Peherstorfer, B., Willcox, K., Gunzburger, M.: Survey of multifidelity methods in uncertainty propagation, inference, and optimization. SIAM Rev. 60(3), 550–591 (2018)
Konrad, J., Farcaş, I.-G., Peherstorfer, B., Di Siena, A., Jenko, F., Neckel, T., Bungartz, H.-J.: Data-driven low-fidelity models for multi-fidelity Monte Carlo sampling in plasma micro-turbulence analysis. J. Comput. Phys. 451, 110898 (2022)
Heinrich, S.: Multilevel Monte Carlo methods. In: Proceedings of the Third International Conference on Large-Scale Scientific Computing-Revised Papers, LSSC ’01, pp. 58–67 (2001)
Giles, M.: Multilevel Monte Carlo path simulation. Oper. Res. 56(3), 607–617 (2008)
Cliffe, K.A., Giles, M., Scheichl, R., Teckentrup, A.L.: Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients. Comput. Vis. Sci. 14(1), 3–15 (2011)
Peherstorfer, B., Gunzburger, M., Willcox, K.: Convergence analysis of multifidelity Monte Carlo estimation. Numer. Math. 139(3), 683–707 (2018)
Peherstorfer, B., Beran, P.S., Willcox, K.: Multifidelity Monte Carlo estimation for large-scale uncertainty propagation. In: 2018 AIAA Non-Deterministic Approaches Conference (2018)
Dodwell, T.J., Ketelsen, C., Scheichl, R., Teckentrup, A.L.: A hierarchical multilevel Markov chain Monte Carlo algorithm with applications to uncertainty quantification in subsurface flow. SIAM/ASA J. Uncertain. Quantif. 3(1), 1075–1108 (2015)
Lykkegaard, M.B., Dodwell, T.J., Fox, C., Mingas, G., Scheichl, R.: Multilevel delayed acceptance MCMC. SIAM/ASA J. Uncertain. Quantif. 11(1), 1–30 (2023)
Peherstorfer, B., Marzouk, Y.: A transport-based multifidelity preconditioner for Markov chain Monte Carlo. Adv. Comput. Math. 45, 2321–2348 (2019)
Beskos, A., Jasra, A., Law, K., Tempone, R., Zhou, Y.: Multilevel sequential Monte Carlo samplers. Stoch. Process. Appl. 127(5), 1417–1440 (2017)
Latz, J., Papaioannou, I., Ullmann, E.: Multilevel sequential\(^2\) Monte Carlo for Bayesian inverse problems. J. Comput. Phys. 368, 154–178 (2018)
Wagner, F., Latz, J., Papaioannou, I., Ullmann, E.: Multilevel sequential importance sampling for rare event estimation. SIAM J. Sci. Comput. 42(4), 2062–2087 (2020)
Peherstorfer, B., Kramer, B., Willcox, K.: Multifidelity preconditioning of the cross-entropy method for rare event simulation and failure probability estimation. SIAM/ASA J. Uncertain. Quantif. 6(2), 737–761 (2018)
Alsup, T., Peherstorfer, B.: Context-aware surrogate modeling for balancing approximation and sampling costs in multi-fidelity importance sampling and Bayesian inverse problems. SIAM/ASA J. Uncertain. Quantif. (2022). (accepted)
Gregory, A., Cotter, C.J., Reich, S.: Multilevel ensemble transform particle filtering. SIAM J. Sci. Comput. 38(3), 1317–1338 (2016)
Briggs, W., Henson, V.E., McCormick, S.: A Multigrid Tutorial, Second Edition, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2000)
Hackbush, W.: Multi-Grid Methods and Applications. Springer, Berlin (1985)
Li, Z., Fan, Y., Ying, L.: Multilevel fine-tuning: Closing generalization gaps in approximation of solution maps under a limited budget for training data. Multiscale Modeling & Simulation 19(1) (2021)
Hoel, H., Law, K., Tempone, R.: Multilevel ensemble Kalman filtering. SIAM J. Numer. Anal. 54(3), 1813–1839 (2016)
Chada, N., Jasra, A., Yu, F.: Multilevel ensemble Kalman-Bucy filters. SIAM/ASA J. Uncertain. Quantif. 10(2), 584–618 (2022)
Petra, N., Martin, J., Stadler, G., Ghattas, O.: A computational framework for infinite-dimensional Bayesian inverse problems, part II: Stochastic Newton MCMC with application to ice sheet flow inverse problems. SIAM J. Sci. Comput. 36(4), 1525–1555 (2014)
Pattyn, F., Perichon, L., Aschwanden, A., Breuer, B., Smedt, B., Gagliardini, O., Gudmundsson, G.H., Hindmarsh, R.C.A., Hubbard, A., Johnson, J.V., Kleiner, T., Konovalov, Y., Martin, C., Payne, A.J., Pollard, D., Price, S., Ruckamp, M., Saito, F., Soucek, O., Sugiyama, S., Zwinger, T.: Benchmark experiments for higher-order and full-Stokes ice sheet models (ISMIP-HOM). Cryosphere 2, 95–108 (2008)
Alnaes, M.S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M.E., Wells, G.N.: The FEniCS Project Version 1.5 (2015)
Villa, U., Petra, N., Ghattas, O.: Documentation to “hIPPYlib: an Extensible Software Framework for Large-scale Deterministic and Bayesian Inverse Problems”. http://hippylib.github.io (2016)
Villa, U., Petra, N., Ghattas, O.: hIPPYlib: an extensible software framework for large-scale deterministic and Bayesian inverse problems. J. Open Source Softw. 3(30) (2018)
Villa, U., Petra, N., Ghattas, O.: HIPPYlib: An extensible software framework for large-scale inverse problems governed by PDEs: Part I: Deterministic inversion and linearized Bayesian inference. ACM Trans. Math. Softw. 47(2) (2021)
Kim, K.-T., Villa, U., Parno, M., Marzouk, Y., Ghattas, O., Petra, N.: hIPPYlib-MUQ: A Bayesian inference software framework for integration of data with complex predictive models under uncertainty. arXiv:2112.00713 (2021)
Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B., Smola, A.: A kernel two-sample test. J. Mach. Learn. Res. 13, 723–773 (2012)
Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29(1) (1998)
Cotter, S.L., Roberts, G.O., Stuart, A.M., White, D.: MCMC methods for functions: modifying old algorithms to make them faster. Statist. Sci. 28(3), 424–446 (2013)
Funding
The first and third author acknowledge support from the Air Force Office of Scientific Research under Award Number FA9550-21-1-0222 (Dr. Fariba Fahroo) and the National Science Foundation (NSF) under award IIS-1901091. The second and fourth author acknowledge support provided by the NSF under Grant No. CAREER-1654311. The second author acknowledges further support provided by the NSF under Grant No. DMS-1840265.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors have no competing interests to declare that are relevant to the content of this article.
Additional information
Communicated by: Anthony Nouy
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Alsup, T., Hartland, T., Peherstorfer, B. et al. Further analysis of multilevel Stein variational gradient descent with an application to the Bayesian inference of glacier ice models. Adv Comput Math 50, 65 (2024). https://doi.org/10.1007/s10444-024-10153-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10444-024-10153-4