Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A pressure-residual augmented GLS stabilized method for a type of Stokes equations with nonstandard boundary conditions

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

With local pressure-residual stabilizations as an augmentation to the classical Galerkin/least-squares (GLS) stabilized method, a new locally evaluated residual-based stabilized finite element method is proposed for a type of Stokes equations from the incompressible flows. We focus on the study of a type of nonstandard boundary conditions involving the mixed tangential velocity and pressure Dirichlet boundary conditions. Unexpectedly, in sharp contrast to the standard no-slip velocity Dirichlet boundary condition, neither the discrete LBB inf-sup stable elements nor the stabilized methods such as the classical GLS method could certainly ensure a convergent finite element solution, because the velocity solution could be very weak with its gradient not being square integrable. The main purpose of this paper is to study the error estimates of the new stabilized method for approximating the very weak velocity solution; with the local pressure-residual stabilizations, we can manage to prove the error estimates with a reasonable convergence order. Numerical results are provided to illustrate the performance and the theoretical results of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this article.

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev spaces, 2nd edn. Academic Press, New-York (2003)

    Google Scholar 

  2. Alekseev, G., Brizitskii, R.V.: Solvability analysis of a mixed boundary value problem for stationary magnetohydrodynamic equations of a viscous incompressible fluid. Symmetry 13, 2088 (2021)

    Article  Google Scholar 

  3. Amara, M., Vera, E.C., Tpujillo, D.: A three field stabilized finite element method for the Stokes equations. C. R. Acad. Sci. Paris, Ser. I 334, 603–608 (2002)

    Article  MathSciNet  Google Scholar 

  4. Amara, M., Vera, E.C., Trujillo, D.: Vorticity-velocity-pressure formulation for Stokes problem. Math. Comp. 73, 1673–1697 (2004)

    Article  MathSciNet  Google Scholar 

  5. Amara, M., Capatina-Papaghiuc, D., Trujillo, D.: Stabilized finite element method for Navier-Stokes equations with physical boundary conditions. Math. Comp. 76, 1195–1217 (2007)

    Article  MathSciNet  Google Scholar 

  6. Amrouche, C., Bernardi, C., Dauge, M., Girault, V.: Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21, 823–864 (1998)

    Article  MathSciNet  Google Scholar 

  7. Amrouche, C., Boussetouan, I.: Vector potentials with mixed boundary conditions. Application to the Stokes problem with pressure and Navier-type boundary conditions. S1AM J. Math. Anal. 53, 1745–1784 (2021)

  8. Amrouche, C., Seloula, N.H.: On the Stokes equations with the Navier-type boundary conditions. Diff. Equ. Appl. 3, 581–607 (2011)

    MathSciNet  Google Scholar 

  9. Amrouche, C., Seloula, N.H.: \(L^p\)-theory for vector potentials and Sobolev’s inequalities for vector fields: application to the Stokes equations with pressure boundary conditions. Math. Mod. Methods Appl. Sci. 23, 37–92 (2013)

    Article  Google Scholar 

  10. Baba, H.A., Amrouche, C., Seloula, N.: Instationary Stokes problem with pressure boundary condition in \(L^p\)-spaces. J. Evol. Equ. 17, 641–667 (2017)

    Article  MathSciNet  Google Scholar 

  11. Babus̆ka, I.: Error-bounds for finite element method. Numer. Math. 16, 322–333 (1971)

  12. Bänsch, E., Höhn, B.: Numerical treatment of the Navier-Stokes equations with slip boundary condition. SIAM J. Sci. Comput. 21, 2144–2162 (2000)

    Article  MathSciNet  Google Scholar 

  13. Becker, R., Braack, M.: A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38, 173–199 (2001)

    Article  MathSciNet  Google Scholar 

  14. Bendali, A., Dominguez, J.M., Gallic, S.: A variational approach for the vector potential formulation of the Stokes and Navier-Stokes problems in three dimensional domains. J. Math. Anal. Appl. 107, 537–560 (1985)

    Article  MathSciNet  Google Scholar 

  15. Bernard, J.M.: Spectral discretizations of the Stokes equations with non standard boundary conditions. J. Sci. Comput. 20, 355–377 (2004)

    Article  MathSciNet  Google Scholar 

  16. Bernardi, C., Rebollo, T.C., Yakoubi, D.: Finite element discretization of the Stokes and Navier-Stokes equations with boundary conditions on the pressure. SIAM J. Numer. Anal. 53, 1256–1279 (2015)

    Article  MathSciNet  Google Scholar 

  17. Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. Springer, Berlin (1991)

    Book  Google Scholar 

  18. Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov-Galerkin formulations for convective dominated flows with a particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982)

    Article  Google Scholar 

  19. Burenkov, V.I.: Sobolev spaces on domains. Teubner-Texte zur Mathematik, vol. 137, Vieweg+Teubner Verlag, Wiesbaden (1998)

  20. Ciarlet, P.: The finite element method for elliptic problems. North-Holland, Amsterdam (1978)

    Google Scholar 

  21. Conca, C., Murat, F., Pironneau, O.: The Stokes and Navier-Stokes equations with boundary conditions involving the pressure. Jpn J. Math. 20, 263–318 (1994)

    Article  MathSciNet  Google Scholar 

  22. Coscia, V.: Existence and uniqueness of very weak solutions to the steady-state Navier-Stokes problem in Lipschitz domains. J. Math. Fluid Mech. 19, 819–829 (2017)

    Article  MathSciNet  Google Scholar 

  23. Dione, I., Urquiza, J.M.: Penalty: finite element approximation of Stokes equations with slip boundary conditions. Numer. Math. 129, 587–610 (2015)

    Article  MathSciNet  Google Scholar 

  24. Douglas, J., Jr., Wang, J.P.: An absolutely stabilized finite element method for the Stokes problem. Math. Comp. 52, 495–508 (1989)

    Article  MathSciNet  Google Scholar 

  25. Du, Z.J., Duan, H.Y., Liu, W.: Staggered Taylor-Hood and Fortin elements for Stokes equations of pressure boundary conditions in Lipschitz domain. Numer. Methods PDE 36, 185–208 (2020)

    Article  MathSciNet  Google Scholar 

  26. Franca, L.P., Frey, S.L.: Stabilized finite element methods: II. The incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 99, 209–233 (1992)

    Article  MathSciNet  Google Scholar 

  27. Franca, L.P., Hughes, T.J.R.: Two classes of mixed finite element methods. Comput. Methods Appl. Mech. Engrg. 69, 89–129 (1988)

    Article  MathSciNet  Google Scholar 

  28. Franca, L.P., Hughes, T.J.R., Stenberg, R.: Stabilized finite element methods for the Stokes problem. In: Gunzburger, M., Nicolaides, R.A. (eds.) Incompressible computational fluid dynamics, pp. 87–108. Cambridge University Press (1993)

    Chapter  Google Scholar 

  29. Franz, S., Höhne, K., Matthies, G.: Grad-div stabilized discretizations on S-type meshes for the Oseen problem. IMA J. Numer. Anal. 38, 299–329 (2018)

    Article  MathSciNet  Google Scholar 

  30. Friganović, S.: A note on regularity of the pressure in the Navier-Stokes system. Ann. Univ. Ferrara 64, 361–370 (2018)

    Article  MathSciNet  Google Scholar 

  31. Girault, V.: Incompressible finite element methods for Navier-Stokes equations with nonstandard boundary conditions in \(\textbf{R} ^{3}\). Math. Comp. 51, 55–74 (1988)

    MathSciNet  Google Scholar 

  32. Girault, V., Raviart, P.-A.: Finite element methods for Navier-Stokes equations. Theory and Algorithms. Springer-Verlag, Berlin (1986)

    Book  Google Scholar 

  33. Gostaf, K.P., Pironneau, O.: Pressure boundary conditions for blood flows. Chin. Ann. Math., Ser. B 36, 829–842 (2015)

    Article  MathSciNet  Google Scholar 

  34. Grisvard, P.: Boundary value problems in non-smooth domains. Univ. of Maryland, Dept. of Math., Lecture Notes no. 19 (1980)

  35. Gunzburger, M.D.: Finite element methods for viscous incompressible flows, a guide to theory, practice, and algorithms. Academic Press, Boston, MA, Computer Science and Scientific Computing (1989)

    Google Scholar 

  36. Gunzburger, M.D., Nicolaides, R.A., Liu, C.H.: Algorithmic and theoretical results on computation of incompressible viscous flows by finite element methods. Comput. Fluids 13, 361–373 (1985)

    Article  MathSciNet  Google Scholar 

  37. Heywood, J.G., Rannacher, R., Turek, S.: Artificial boundaries and flux and pressure conditions for incompressible Navier-Stokes equations. Int. J. Numer. Meth. Fluids 22, 325–352 (1992)

    Article  MathSciNet  Google Scholar 

  38. Hošek, R., She, B.: Convergent numerical method for the Navier-Stokes-Fourier system: a stabilized scheme. IMA J. Numer. Anal. 39, 2045–2068 (2019)

    Article  MathSciNet  Google Scholar 

  39. Hughes, T.J.R.: Multiscale phenomena: green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput. Methods Appl. Mech. Enrg. 127, 387–401 (1995)

    Article  MathSciNet  Google Scholar 

  40. Hughes, T.J.R., Franca, L.P., Balestra, M.: A new finite element formulation for computational fluids dynamics: V. Circumventing the Babus̆ka-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput. Methods Appl. Mech. Engrg. 59, 85–99 (1986)

    Article  MathSciNet  Google Scholar 

  41. Hughes, T.J.R., Franca, L.P.: A new finite element formulation for computational fluid dynamics: VII. The Stokes problem with various well-posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces. Comput. Methods Appl. Mech. Engrg. 65, 85–96 (1987)

    Article  MathSciNet  Google Scholar 

  42. Jiang, B.-N.: On the least-squares method. Comput. Methods Appl. Mech. Engrg. 152, 239–257 (1998)

    Article  MathSciNet  Google Scholar 

  43. Kashiwabara, T., Oikawa, I., Zhou, G.: Penalty method with P1/P1 finite element approximation for the Stokes equations under the slip boundary condition. Numer. Math. 134, 705–740 (2016)

    Article  MathSciNet  Google Scholar 

  44. Kim, T., Cao, D.: Some properties on the surfaces of vector fields and its application to the Stokes and Navier-Stokes problems with mixed boundary conditions. Nonl. Anal. 113, 94–114 (2015)

    Article  MathSciNet  Google Scholar 

  45. Kwon, O.S., Kweon, J.R.: For the vorticity-velocity-pressure form of the Navier-Stokes equations on a bounded plane domain with corners. Nonl. Anal. 75, 2936–2956 (2012)

    Article  MathSciNet  Google Scholar 

  46. Kwon, O.S., Kweon, J.R.: Interior jump and regularity of compressible viscous Navier-Stokes flows through a cut. SIAM J. Math. Anal. 49, 1982–2008 (2017)

    Article  MathSciNet  Google Scholar 

  47. Liakos, A.: Discretization of the Navier-Stokes equations with slip boundary condition. Numer. Methods Partial Differ. Eq. 17, 26–42 (2001)

    Article  MathSciNet  Google Scholar 

  48. Matsui, K.: A projection method for Navier-Stokes equations with a boundary condition including the total pressure. arXiv:2105.13014v2 (2021)

  49. Medková, D.: Several non-standard problems for the stationary Stokes system. Analysis 40, 1–17 (2020)

    Article  MathSciNet  Google Scholar 

  50. Mitrea, D.: Non-classical boundary value problems of elastostatics and hydrostatics on Lipschitz domains. Math. Meth. Appl. Sci. 24, 781–804 (2001)

    Article  MathSciNet  Google Scholar 

  51. Mitrea, M., Monniaux, S.: On the analyticity of the semigroup generated by the Stokes operator with Neumann-type boundary conditions on Lipschitz subdomains of Riemannian manifolds. Trans. Amer. Math. Soc. 361, 3125–3157 (2009)

    Article  MathSciNet  Google Scholar 

  52. Nicaise, S.: Regularity of the solutions of elliptic systems in polyhedral domains. Bull. Belg. Math. Soc. 4, 411–429 (1997)

    MathSciNet  Google Scholar 

  53. Nowakowski, B., Ströhmer, G.: In-flow and out-flow problem for the Stokes system. J. Math. Fluid Mech. 22, 58 (2020)

    Article  MathSciNet  Google Scholar 

  54. Oussama, B., Daikh, Y., Yakoubi, D.: Numerical analysis for backward Euler spectral discretization for Stokes equations with boundary conditions involving the pressure: Part I. hal-03751709 (2022)

  55. Pironneau, O.: Finite element methods for fluids. John Wiley and Sons/Masson, New York and Paris (1989)

    Google Scholar 

  56. Robert, J.E., Thomas, J.-M.: Mixed and hybrid methods. In: Handbook of Numerical Analysis. Ciarlet, P.G., Lions, J.L. (eds.) vol. II, Finite Element Methods (Part 1), North-Holland, Amsterdam (1991)

  57. Rebollo, T.C., Girault, V., Murat, F., Pironneau, O.: Analysis of a coupled fluid-structure model with applications to hemodynamics. SIAM J. Numer. Anal. 54, 994–1019 (2016)

    Article  MathSciNet  Google Scholar 

  58. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54, 483–493 (1990)

    Article  MathSciNet  Google Scholar 

  59. Bertoluzza, S., Chabannes, V., Prud’homme, C., Szopos, M.: Boundary conditions involving pressure for the Stokes problem and applications in computational hemodynamics. Comput. Methods Appl. Mech. Engrg. 322, 58–80 (2017)

    Article  MathSciNet  Google Scholar 

  60. Fouchet-Incaux, J.: Artificial boundaries and formulations for the incompressible Navier-Stokes equations: applications to air and blood flows. SeMA J. 64, 1–40 (2014)

    Article  MathSciNet  Google Scholar 

  61. Conca, C., Pars, C., Pironnea, O., Thiriet, M.: Navier-Stokes equations with imposed pressure and velocity fluxes. Internat. J. Numer. Methods Fluids 20, 267–28 (1995)

    Article  MathSciNet  Google Scholar 

  62. Vignon-Clementel, I.E., Figueroa, C.A., Jansen, K.E., Taylor, C.A.: Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput. Methods Appl. Mech. Engrg. 195, 3776–3796 (2006)

    Article  MathSciNet  Google Scholar 

  63. Vignon-Clementel, I.E., Figueroa, C.A., Jansen, K.E., Taylor, C.A.: Outflow boundary conditions for 3D simulations of non-periodic blood flow and pressure fields in deformable arteries. Comput. Methods Biomech. Biomed. Eng. 13, 625–640 (2010)

    Article  Google Scholar 

  64. Gostaf, K.P., Pironneau, O.: Pressure boundary conditions for blood flows. Chin. Ann. Math., Ser. B 36, 829–842 (2015)

    Article  MathSciNet  Google Scholar 

  65. Tokuda, Y., Song, M.-H., Ueda, Y., Usui, A., Akita, T., Yoneyama, S., Maruyama, S.: Three-dimensional numerical simulation of blood flow in the aortic arch during cardiopulmonary bypass. Eur. J. Cardiothorac. Surg. 33, 164–167 (2008)

    Article  Google Scholar 

  66. Ohhara, Y., Oshima, M., Iwai, T., Kitajima, H., Yajima, Y., Mitsudo, K., Krdy, A., Tohnai, I.: Investigation of blood flow in the external carotid artery and its branches with a new 0D peripheral model. BioMed. Eng. OnLine 15, 16 (2016)

    Article  Google Scholar 

  67. Kim, T., Cao, D.: Equations of motion for incompressible viscous fluids-with mixed boundary conditions. Birkhäuser, Springer Nature AG, Switzerland (2021)

    Book  Google Scholar 

  68. Panasenko, G., Pileckas, K.: Pressure boundary conditions for viscous flows in thin tube structures: Stokes equations with locally distributed Brinkman term. Math. Model. Nat. Phenom. 18, 17 (2023)

    Article  MathSciNet  Google Scholar 

  69. Allaire, G.: Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes. I. Abstract framework, volume distribution of holes. Arch. Ration. Mech. Anal. 113, 209–259 (1991)

    Article  MathSciNet  Google Scholar 

  70. Bonito, A., Guermond, J.-L.: Approximation of the eigenvalue problem for the time-harmonic Maxwell system by continuous Lagrange finite elements. Math. Comp. 80, 1887–1910 (2011)

    Article  MathSciNet  Google Scholar 

  71. Costabel, M., Dauge, M.: Weighted regularization of Maxwell equations in polyhedral domains, a rehabilitation of Nodal finite elements. Numer. Math. 93, 239–277 (2002)

    Article  MathSciNet  Google Scholar 

  72. Buffa, A., Ciarlet, P., Jr., Jamelot, E.: Solving electromagnetic eigenvalue problems in polyhedral domains with nodal finite elements. Numer. Math. 113, 497–518 (2009)

    Article  MathSciNet  Google Scholar 

  73. Burman, E., Fernández, M.A., Hansbo, P.: Continuous interior penalty finite element method for Ossen’s equations. SIAM J. Numer. Aanal. 44, 1248–1274 (2006)

    Article  Google Scholar 

  74. Preiss, K., Biró, O., Ticar, I.: Gauged current vector potential and reentrant corners in the FEM analysis of 3D eddy currents. IEEE Trans. Magn. 36, 840–843 (2000)

    Article  Google Scholar 

  75. Duan, H.Y., Lin, P., Cao, J.W., Tan, R.C.E.: Approximation of singular solutions and singular data for Maxwell’s equations by Lagrange elements. IMA J. Numer. Anal. 42, 771–816 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their very valuable comments and suggestions which have helped us to improve the presentation of the paper.

Funding

This work was supported by the National Natural Science Foundation of China (Grant numbers: 12371371, 12261160361, 11971366).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huoyuan Duan or Duowei Zhu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by: Paul Houston

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, H., Tan, R.C.E. & Zhu, D. A pressure-residual augmented GLS stabilized method for a type of Stokes equations with nonstandard boundary conditions. Adv Comput Math 50, 105 (2024). https://doi.org/10.1007/s10444-024-10204-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-024-10204-w

Keywords

Mathematics Subject Classification (2010)