Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

IODA: an interaction-oriented approach for multi-agent based simulations

  • Published:
Autonomous Agents and Multi-Agent Systems Aims and scope Submit manuscript

Abstract

Multi-Agent Systems (MAS) design methodologies and Integrated Development Environments exhibit many interesting properties that also support simulation design. Yet, in their current form, they are not appropriate enough to model Multi-Agent Based Simulations (MABS). Indeed, their design is focused on the functionalities to be achieved by the MAS and the allocation of these functionalities among software agents. In that context, the most important point of design is the organization of the agents and how they communicate with each other. On the opposite, MABS aim at studying emergent phenomena, the origin of which lies in the interactions between entities and their interaction with the environment. In that context, the interactions are not limited to exchanging messages but can also be fundamental physical interactions or any other actions involving simultaneously the environment and one or several agents. To deal with this issue, this paper presents the core notions of the Interaction-Oriented Design of Agent simulations (IODA) approach to simulation design. It includes a design methodology, a model, an architecture and also JEDI, a simple implementation of IODA concepts for reactive agents. First of all, our approach focuses on the design of an agent-independent specification of behaviors, called interactions. These interactions are not limited to the analysis phase of simulation: they are made concrete both in the model and at the implementation stage. In addition, no distinction is made between agents and objects: all entities of the simulation are agents. Owing to this principle, designing which interactions occur between agents, as well as how agents act, is achieved by means of an intuitive plug-and-play process, where interaction abilities are distributed among the agents. Besides, the guidelines provided by IODA are not limited to the specification of the model as they help the designer from the very beginning towards a concrete implementation of the simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Anderson J.R. (1974) Simulation: Methodology and application in agricultural economics. Review of Marketing and Agricultural Economics 42(01): 3–55

    Google Scholar 

  2. Anderson J. R., Bothell D., Byrne M. D., Douglass S., Lebiere C., Qin Y. (2004) An integrated theory of the mind. Psychological Review 111(4): 1036–1060

    Article  Google Scholar 

  3. Axelrod R. (1997) Advancing the art of simulation in the social sciences. Simulating Social Phenomena, Lecture Notes in Economics and Mathematical Systems 456: 21–40

    Google Scholar 

  4. Bellifemine, F., Poggi, A., & Rimassa, G. (1999). JADE—a FIPA-compliant agent framework. In Proceedings of the fourth international conference on the practical application of intelligent agents and multi agent technology (PAAM’99), London, pp. 97–108.

  5. Bensaid, N., & Mathieu, P. (1997). MAGIQUE: A hybrid and hierarchical multi-agent architecture model. In Proceedings of the second international conference on the practical application of intelligent agents and multi agent technology (PAAM’97) (pp. 145–155).

  6. Bernon, C., Camps, V., Gleizes, M. P., & Picard, G. (2005) Engineering self-adaptive multi-agent systems: The ADELFE methodology. USA: Idea Group Publishing, Chap. 7, pp. 172–202.

  7. Braubach, L., Pokahr, A., & Lamersdorf, W. (2005). Jadex: A bdi agent system combining middleware and reasoning. In R. Unland, & M. K. M. Calisti (Eds.), Software agent-based applications, platforms and development kits (pp. 143–168). Basel: Birkhäuser-Verlag.

  8. Bresciani P., Perini A., Giorgini P., Giunchiglia F., Mylopoulos J. (2004) Tropos: An agent-oriented software development methodology. Autonomous Agents and Multi-Agent Systems 8(3): 203–236

    Article  Google Scholar 

  9. Briot, J. P., & Meurisse, T. (2007). An experience in using components to construct and compose agent behaviors for agent-based simulation. In Fernando Barros, N. G. Claudia Frydman, & B. Ziegler (Eds.), Proceedings of the international modeling and simulation multiconference (IMSM’07), The Society for Modeling & Simulation International (SCS) (pp. 207–212).

  10. Brooks R. (1986) A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation 2(1): 14–23

    Article  Google Scholar 

  11. Busetta, P., Howden, N., Rönnquist, R., & Hodgson, A. (2000). Structuring BDI agents in functional clusters. In Proceedings of the 6th international workshop on intelligent agents VI, agent theories, architectures, and languages (ATAL’99) (pp. 277–289). London: Springer.

  12. Campos, A. M., Canuto, A. M., Fernandes, J. H., & de Moura, E. C. (2004). Masim: A methodology for the development of agent-based simulations. In Proceedings of 16th European simulation symposium, Budapest, Hungary.

  13. Cannata N., Corradini F., Merelli E. (2008) Multiagent modelling and simulation of carbohydrate oxidation in cell. International Journal of Modelling, Identification and Control (IJMIC) 3(1): 17–28. doi:10.1504/IJMIC.2008.018191

    Article  Google Scholar 

  14. Chella, A., Cossentino, M., Sabatucci, L., & Seidita, V. (2004). From passi to agile passi: Tailoring a design process to meet new needs. In Proceedings of the international conference on intelligent agent technology (IAT’04) (pp. 471–474), IEEE Computer Society, Los Alamitos, CA, USA.

  15. Choi, D., Kaufman, M., Langley, P., Nejati, N., & Shapiro, D. (2004). An architecture for persistent reactive behavior. In Proceedings of the third international joint conference on autonomous agents and multiagent systems (AAMAS’04) (pp. 988–995), IEEE Computer Society.

  16. Christley, S., Xiang, X., & Madey, G. (2004). Ontology for agent-based modeling and simulation. In Proceedings of the agent 2004 conference on social dynamics: Interaction, reflexivity and emergence, (pp. 115–125).

  17. Desmeulles, G., Querrec, G., Redou, P., Kerdélo, S., Misery, L., Rodin, V., & Tisseau, J. (2006). The virtual reality applied to biology understanding: The in virtuo experimentation. Expert Systems with Applications, 30(1), 82–92. http://dx.doi.org/10.1016/j.eswa.2005-09-051.

  18. Devigne, D., Mathieu, P., & Routier, J. C. (2005). Interaction-based approach for game agents. In: Y. Merkuryev, R. Zobel, E. Kerckhoffs (Eds.), Proceedings of the 19th European conference on modelling and simulation (ECMS’05) (pp. 705–714).

  19. Doi, T., Tahara, Y., & Honiden, S. (2005) IOM/T: An interaction description language for multi-agent systems. In: Proceedings of the fourth international joint conference on autonomous agents and multiagent systems (AAMAS’05) (pp. 778–785) ACM, Utrecht, The Netherlands.

  20. Drogoul A., Corbara B., Fresneau D. (1992) Applying ethomodelling to social organization in ants. In: Billen J. (ed.) Biology and evolution of social insects. Leuven University Press, Belgium, pp 375–383

    Google Scholar 

  21. Drogoul A., Vanbergue D., Meurisse T. (2003) Multi-agent based simulation: Where are the agents?. Lecture Notes in Computer Science 2581: 43–49

    Article  Google Scholar 

  22. Edmonds, B. (2005). Simulation and complexity—how they can relate. In Virtual worlds of precision—computer-based simulations in the sciences and social sciences, feldmann, valerie and mühlfeld (katrin edn., pp. 5–32). Münster: Lit Verlag.

  23. Edmonds B., Hales D. (2003) Replication, replication and replication: Some hard lessons from model alignment. Journal of Artificial Societies and Social Simulation 6(4): 11

    Google Scholar 

  24. FIPA. (2002). Foundation for intelligent physical agents (FIPA) specification. http://www.fipa.org/.

  25. Fishwick P. A. (1995) Simulation model design and execution: Building digital worlds. Prentice Hall PTR, Upper Saddle River, NJ, USA

    Google Scholar 

  26. SE Division at Fondazione Bruno Kessler. (2009). TAOM4E: Tool for agent oriented modeling. Accessed September 12, 2009, from http://sra.itc.it/tools/taom4e/.

  27. Gaillard, F., Kubera, Y., Mathieu, P., & Picault, S. (2008). A reverse engineering form for multi agent systems. In A. Artikis, G. Picard, & L. Vercouter (Eds.) Proceedings of the 9th international workshop engineering societies in the agents world (ESAW’2008), Lecture Notes on Artificial Intelligence, Vol. 5485, pp. 137–153.

  28. Galán J. M., Izquierdo L. R. (2005) Appearances can be deceiving: Lessons learned re-implementing axelrod’s evolutionary approach to norms. Journal of Artificial Societies and Social Simulation 8(3): 2

    Google Scholar 

  29. Galán, J. M., Izquierdo, L. R., Izquierdo, S. S., Santos, J. I., del Olmo, R., López-Paredes, A., & Edmonds, B. (2009). Errors and artefacts in agent-based modelling. Journal of Artificial Societies and Social Simulation 12(1):1. http://jasss.soc.surrey.ac.uk/12/1/1.html.

    Google Scholar 

  30. Garcia-Ojeda, J. C., DeLoach, S. A., Robby, Oyenan, W. H., & Valenzuela, J. (2008). O-MaSE: A customizable approach to developing multiagent development processes. In Proceedings of the 8th international workshop on agent oriented software engineering (AOSE 2007), pp. 1–15.

  31. Garcia-Ojeda, J. C., DeLoach S. A., Robby, (2009). agentTool III: from process definition to code generation. In AAMAS ’09: Proceedings of the 8th international conference on autonomous agents and multiagent systems, international foundation for autonomous agents and multiagent systems (pp. 1393–1394), Richland, SC.

  32. Georgeff, M. P., & Lansky, A. L. (1987). Reactive reasoning and planning. In Proceedings of the sixth national conference on artificial intelligence (AAAI’87) (pp. 677–682), Seattle, WA.

  33. Gilbert N., Troitzsch K. G. (2005) Simulation for the social scientist (2nd ed.). Open University Press, Maidenhead and New York

    Google Scholar 

  34. Grimm V., Berger U., Bastiansen F., Eliassen S., Ginot V., Giske J., Goss-Custard J., Grand T., Heinz S.K., Huse G., Huth A., Jepsen J. U., Jørgensen C., Mooij W. M., Müller B., Pe’er G., Piou C., Railsback S. F., Robbins A. M., Robbins M.M., Rossmanith E., Rüger N., Strand E., Souissi S., Stillman R. A., Vabø R., Visser U., Deangelis D. L. (2006) A standard protocol for describing individual-based and agent-based models. Ecological modelling 198(1-2): 115–126

    Article  Google Scholar 

  35. Gutknecht, O., Ferber, J., & Michel, F. (2001). Integrating tools and infrastructures for generic multi-agent systems. In J. P. Müller, E. Andre, S. Sen, & C. Frasson (Eds.) Proceedings of the 5th international conference on autonomous agents (AGENTS’01). Montreal, Canada: ACM.

  36. Huber, M. J. (1999). Jam: A bdi-theoretic mobile agent architecture. In Proceedings of the third annual conference on autonomous agents (AGENTS’99) (pp. 236–243). New York, NY: ACM.

  37. Ingalls, R. G. (2001). Introduction to simulation. In WSC ’01: Proceedings of the 33nd conference on Winter simulation (pp. 7–16). Washington, DC: IEEE Computer Society.

  38. Janssen M. A., Alessa L. N., Barton M., Bergin S., Lee A. (2008) Towards a community framework for agent-based modelling. Journal of Artificial Societies and Social Simulation 11(2): 6

    Google Scholar 

  39. Jayatilleke, G. B., Padgham, L., & Winikoff, M. (2007). Evaluating a model driven development toolkit for domain experts to modify agent based systems. In Proceedings of the 7th international workshop on agent-oriented software engineering (AOSE-07) (Vol. 4405/2007, pp. 190–207). Hakodate, Japan: Springer.

  40. Jennings, N. R. (1999). Agent-based computing: Promise and perils. In Proceedings of the sixteenth international joint conference on artificial intelligence (IJCAI’99) (pp. 1429–1436). San Francisco, CA: Morgan Kaufmann Publishers Inc.

  41. Klügl, F., Herrler, R., & Fehler, M. (2006). Sesam: Implementation of agent-based simulation using visual programming. In Proceedings of the fifth international joint conference on autonomous agents and multiagent systems (AAMAS ’06) (pp. 1439–1440). New York, NY: ACM. http://doi.acm.org/10.1145/1160633.1160904.

  42. Kubera, Y., Mathieu, P., & Picault, S. (2008). Interaction-oriented agent simulations: From theory to implementation. In Proceedings of ECAI 08, Patras, Greece.

  43. Kubera, Y., Mathieu, P., & Picault, S. (2009a). How to avoid biases in reactive simulations. In Y. Demazeau, J. Pavón, J. Corchado, & J. Bajo (Eds.), Proceedings of 7th international conference on practical applications of agents and multi-agents systems (PAAMS 2009) (pp. 100–109). Advances in intelligent and soft computing. New York: Springer.

  44. Kubera, Y., Mathieu, P., & Picault, S. (2009b). Interaction biases in multi-agent simulations: An experimental study. In: G. P. Alexander Artikis, & L. Vercouter (Eds.) Post-proceedings of the 9th international workshop engineering societies in the agents world (ESAW’2008). LNAI, Vol. 5485, pp. 217–235. New York: Springer.

  45. Kubera, Y., Mathieu, P., & Picault, S. (2010). An interaction-oriented model of customer behavior for the simulation of supermarkets. In N. Cercone, & J. Huang (Eds.), Proceedings of IEEE/WIC/ACM international conference on intelligent agent technology (IAT’10). http://www.yorku.ca/wiiat10/?2.

  46. Laird J. E., Newell A., Rosenbloom P. S. (1987) Soar: An architecture for general intelligence. Artificial Intelligence 33(1): 1–64

    Article  MathSciNet  Google Scholar 

  47. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., & Balan, G. (2005). Mason: A multiagent simulation environment. Simulation, 81(7), 517–527. http://dx.doi.org/10.1177/0037549705058073.

    Google Scholar 

  48. Malone T.W., Crowston K. (1994) The interdisciplinary study of coordination. ACM Computing Surveys (CSUR) 26(1): 87–119

    Article  Google Scholar 

  49. Mathieu, P., & Brandouy, O. (2010). A generic architecture for realistic simulations of complex financial dynamics. In: Y. Demazeau, F. Dignum, J. Corchado, & J. Bajo (Eds.), Advances in practical applications of agents and multiagent systems, 8th international conference on practical applications of agents and multi-agents systems (PAAMS’ 2010). Advances in intelligent and soft computing, Vol. 70, pp. 185–197. Springer. ISBN: 978-3-642-12383-2.

  50. Miles, S., Joy, M., & Luck, M. (2001). Designing agent-oriented systems by analysing agent interactions. In Agent-oriented software engineering (pp. 377–405). New York: Springer.

  51. Müller, J. P., & Pischel, M. (1994). Modelling interacting agents in dynamic environments. In Proceedings of the eleventh European conference on artificial intelligence (ECAI’94) (pp. 709–713), Amsterdam, The Netherlands.

  52. North, M., Tatara, E., Collier, N., & Ozik, J. (2007). Visual agent-based model development with repast simphony. In Proceedings of the agent 2007 conference on complex interaction and social emergence (pp. 173–192).

  53. Odell, J., Parunak, H., & Bauer, B. (2000). Extending uml for agents. In Proceedings of the agent-oriented information systems workshop (AOIS’00), pp. 3–17.

  54. Ominici, A. (2001). Soda: Societies and infrastructures in the analysis and design of agent-based systems. In Agent-oriented software engineering (Vol. 1957/2001, pp. 311–326). New York: Springer

  55. Ören, T. (1987). Simulation: Taxonomy. In Systems and control encyclopedia, (pp. 4411–4414). Boston: Pergamon Press.

  56. Padgham, L., Thangarajah, J., & Winikoff, M. (2005). Tool support for agent development using the prometheus methodology. In Proceedings of the fifth international conference on quality software (QSIC ’05) (pp. 383–388). Washington, DC: IEEE Computer Society. http://dx.doi.org/10.1109/QSIC.2005.66.

  57. Pavón, J., & Gómez-Sanz, J. J. (2003). Agent oriented software engineering with INGENIAS, (Vol. 2691, pp. 394–403). Springer-Verlag: Prague, Czech Republic.

  58. Pavon, J., Sansores, C., Gomez-Sanz, J. J. & Wang, F.-Y. (2008). Modelling and simulation of social systems with ingenias. International Journal of Agent-Oriented Software Engineering, 2(2), 196–221. http://dx.doi.org/10.1504/IJAOSE.2008.017315.

    Google Scholar 

  59. Robinson, S. (2006). Conceptual modeling for simulation: Issues and research requirements. In Proceedings of the winter simulation conference, 2006 (WSC’06), pp. 792–800.

  60. Sargent, R. G. (1998). Verification and validation of simulation models. In Proceedings of the 30th conference on Winter simulation (WSC’98) (pp. 121–130). Los Alamitos, CA: IEEE Computer Society Press.

  61. Sargent, R. G. (2005). Verification and validation of simulation models. In Proceedings of the 37th Winter simulation conference (WSC ’05) (pp. 130–143).

  62. Shannon, R. E. (1976). Simulation modeling and methodology. In Proceedings of the 76 bicentennial conference on Winter simulation (WSC ’76) (pp. 9–15).

  63. Shannon, R. E. (1998). Introduction to the art and science of simulation. In: Proceedings of the 30th Winter simulation conference (WSC’98) (pp. 7–14). Los Alamitos, CA: IEEE Computer Society Press.

  64. Terna, P. (1998). Simulation tools for social scientists: Building agent based models with Swarm. Journal of Artificial Societies and Social Simulation, 1(2). http://jasss.soc.surrey.ac.uk/1/2/4.html.

  65. Wilenski, U. (1999). Netlogo. http://ccl.northwestern.edu/netlogo/, Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.

  66. Winikoff M., Padgham L. (2004) Developing Intelligent agent systems: A practical guide. Halsted Press, New York, NY

    Google Scholar 

  67. Zambonelli, F., Jennings, N. R., & Wooldridge, M. (2003). Developing multiagent systems: The gaia methodology. ACM Transactions on Software Engineering and Methodology, 12(3), 317–370. http://doi.acm.org/10.1145/958961.958963.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoann Kubera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubera, Y., Mathieu, P. & Picault, S. IODA: an interaction-oriented approach for multi-agent based simulations. Auton Agent Multi-Agent Syst 23, 303–343 (2011). https://doi.org/10.1007/s10458-010-9164-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10458-010-9164-z

Keywords