Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Development and implementation of clinical guidelines: An artificial intelligence perspective

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

Clinical practice guidelines in paper format are still the preferred form of delivery of medical knowledge and recommendations to healthcare professionals. Their current support and development process have well identified limitations to which the healthcare community has been continuously searching solutions. Artificial intelligence may create the conditions and provide the tools to address many, if not all, of these limitations.. This paper presents a comprehensive and up to date review of computer-interpretable guideline approaches, namely Arden Syntax, GLIF, PROforma, Asbru, GLARE and SAGE. It also provides an assessment of how well these approaches respond to the challenges posed by paper-based guidelines and addresses topics of Artificial intelligence that could provide a solution to the shortcomings of clinical guidelines. Among the topics addressed by this paper are expert systems, case-based reasoning, medical ontologies and reasoning under uncertainty, with a special focus on methodologies for assessing quality of information when managing incomplete information. Finally, an analysis is made of the fundamental requirements of a guideline model and the importance that standard terminologies and models for clinical data have in the semantic and syntactic interoperability between a guideline execution engine and the software tools used in clinical settings. It is also proposed a line of research that includes the development of an ontology for clinical practice guidelines and a decision model for a guideline-based expert system that manages non-compliance with clinical guidelines and uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. http://guideline.gov/index.aspx.

References

  • Aamodt A, Plaza E (1994) Case-based reasoning: foundational issues, methodological variations, and system approaches. AI Commun 7(1):39–59

    Google Scholar 

  • Abbod M, von Keyserlingk D, Linkens D, Mahfoul M (2001) Survey of utilization of fuzzy technology in medicine and healthcare. Fuzzy Set Syst 120:331–349

    Article  Google Scholar 

  • Anand V, Biondich PG, Liu G, Rosenman M, Downs SM (2004) Child health improvement through computer automation: the CHICA system. Medinfo 11(1):187–191

    Google Scholar 

  • Antoniou G, Harmelen F (2009) Web ontology language: OWL. In: Staab S, Studer R (eds) Handbook on ontologies. Springer, Heidelberg/Berlin, pp 91–110

    Chapter  Google Scholar 

  • Anogianakis G, Maglavera S, Pomportsis A, Bountzioukas S, Beltrame F, Orsi G (1998) Medical emergency aid through telematics: design, implementation guidelines and analysis of user requirements for the MERMAID project. Int J Med Inform 52:93–103

    Article  Google Scholar 

  • Bareiss R (1989) Exemplar-based knowledge acquisition: a unified approach to concept representation, classification, and learning. Academic Press Professional Inc, San Diego

    MATH  Google Scholar 

  • Barnett G, Hoffer E, Packer M (1992) DXplain-demonstration and discussion of a diagnostic decision support system. Proc AnnU Symp Comput Appl Med Care: 822

  • Berger J (1994) Roentgen: radiation therapy and case-based reasoning. In: O’Leary D, Selfridge P (eds) Proceedings of the 10th conference on artificial intelligence for applications. IEEE Computer Society Press, Los Alamitos, pp 171–177

    Google Scholar 

  • Berners-Lee T, Hendler J, Lassila O (2001) The semantic web. Sci Am 284(5):34–43

    Article  Google Scholar 

  • Bichindarits I, Marling C (2006) Case-based reasoning in health sciences: what’s next? Artif Intell Med 36:127–135

    Article  Google Scholar 

  • Bodenreider O (2006) The unified medical language system (UMLS): integrating biomedical terminology. Nucl Acids Res 32:267–270

    Article  Google Scholar 

  • Bottrighi A, Terenziani P, Montani S, Torchio M, Molino G (2006) Clinical guidelines contextualization in GLARE. AMIA Annu Symp Proc: 860

  • Boxwala A, Peleg M, Tu S, Ogunyemi O, Zeng Q, Wang D, Patel V, Greenes R, Shortliffe E (2004) GLIF3: a representation format for sharable computer-interpretable clinical practice guidelines. J Biomed Inform 37:147–161

    Article  Google Scholar 

  • Bradburn C, Zeleznikow J (1994) The application of case-based reasoning to the tasks of health care planning. In: Wess S, Althoff K, Richter M (eds) Topics in case-based reasoning. Springer, Berlin, pp 365–378

    Chapter  Google Scholar 

  • Bratko I, Mozetic I, Lavac N (1989) KARDIO: a study in deep and qualitative knowledge for expert systems. MIT Press, Cambridge

    Google Scholar 

  • Brennan A (2000) The Institute of Medicine report on medical errors-could it do harm? N Engl J Med 342(15):1123–1125

    Article  Google Scholar 

  • Chawla A, Gunderman R (2008) Defensive medicine: prevalence, implications, and recommendations. Acad Rad 15(7):948–949

    Article  Google Scholar 

  • Cheater F, Closs S (1997) The effectiveness of methods of dissemination and implementation of clinical guidelines: a selective review. Clin Eff Nurs 1:4–15

    Article  Google Scholar 

  • Clark D (1990) Numerical and symbolic approaches to uncertainty management in AI. Artif Intell Rev 4(2):109–146

    Article  Google Scholar 

  • Codish S, Shiffman R (2005) A model of ambiguity and vagueness in clinical practice guideline recommendations. AMIA Annu Symp Proc 2005:146–150

  • De Clercq P, Blom J, Korsten H, Hasman A (2004) Approaches for creating computer-interpretable guidelines that facilitate decision support. Artif Intell Med 31(1):1–27

    Article  Google Scholar 

  • Dempster A (1967) Upper and lower probability inferences based on a sample from a finite univariate population. Biometrika 54(3–4):515

    Article  MathSciNet  Google Scholar 

  • Dennis S, Edwards S, Partridge M, Pinnock H, Qureshi S (2004) The dissemination of the British guideline on the management of asthma. Respir Med 98:832–837

    Article  Google Scholar 

  • Dinh H, Lee C, Niyato D, Wang P (2011) A survey of mobile cloud computing: architecture, applications, and approaches. Wirel Commun Mob Comput. doi:10.1002/wcm.1203/pdf

  • Dolin R, Alschuler L (2011) Approaching semantic interoperability in Health Level Seven. J Am Med Inform Assoc 18(1):99–103

    Article  Google Scholar 

  • Elkin P, Peleg M, Lacson R, Bernstam E, Tu S, Boxwala A (2000) Toward standardization of electronic guideline representation. MD Comput 17(6):39–44

    Google Scholar 

  • Fox J, Thomson R (1998) Decision support and disease management: a logic engineering approach. IEEE Trans Inf Technol B 2(4):217–228

    Article  Google Scholar 

  • Fox J, Johns N, Rahmanzadeh A (1998) Disseminating medical knowledge: the PROforma approach. Artif Intell Med 14(2):157–182

    Article  Google Scholar 

  • Fox J, Glasspool D, Bury J (2001) Quantitative and qualitative approaches to reasoning under uncertainty in medical decision making. In: Quaglini S, Barahona P, Andreassen S (eds) Artificial intelligence in medicine—Lecture notes in computer science, vol 2101. Springer, Berlin, pp 272–282

    Google Scholar 

  • Fox J, Alabassi A, Patkar V, Rose T, Black E (2006) An ontological approach to modelling tasks and goals. Comput Biol Med 36:837–856

    Article  Google Scholar 

  • Fox J, Black R, Chronakis I, Dunlop R, Patkar V, South M, Thomson R (2008) From guidelines to careflows: modelling and supporting complex clinical processes. In: Teije A, Miksch S, Lucas P (eds) Computer-based medical guidelines and protocols: a primer and current trends. IOS Press, Amsterdam, pp 44–62

    Google Scholar 

  • Gardner R, Pryor T, Warner H (1999) The HELP hospital information system: update 1998. Int J Med Inform 54(3):169–182

    Article  Google Scholar 

  • Gruber T (1993) A translation approach to portable ontology specifications. Knowl Acquis 5(2):199–220

    Article  Google Scholar 

  • Househ M, Kushniruk A, Maclure M, Carleton B, Cloutier-Fisher D (2011) The use of conferencing technologies to support drug policy group knowledge exchange processes: an action case approach. Int J Med Inform 80:251–261

    Article  Google Scholar 

  • Hripcsak G (1994) Writing Arden syntax medical logic modules. Comput Biol Med 24(5):331–363

    Article  Google Scholar 

  • Hutchings A, Raine R, Sanderson C, Black N (2006) A comparison of formal consensus methods used for developing clinical guidelines. J Health Serv Res Policy 11(4):218–24

    Article  Google Scholar 

  • Isern D, Moreno A (2008) Computer-based execution of clinical. Int J Med Inform 77:787–808

    Article  Google Scholar 

  • Isern D, Sánchez D, Moreno A (2012) Ontology-driven execution of clinical guidelines. Comput Methods Prog Biomed 107(2):122–139

    Article  Google Scholar 

  • Jackson P (1990) Introduction to expert systems. Addison-Wesley Longman Publishing, Boston

    Google Scholar 

  • John R, Zhou S-M, Garibaldi J, Chiclana F (2008) Automated group decision support systems under uncertainty: trends and future research. Int J Comput Intell Res 4(4):357–371

    Article  Google Scholar 

  • Johnson C, Turley J (2006) The significance of cognitive modeling in building healthcare interfaces. Int J Med Inform 75:163–172

    Article  Google Scholar 

  • Kaiser K, Miksch S (2009) Versioning computer-interpretable guidelines: semi-automatic modeling of ‘Living Guidelines’ using an information extraction method. Artif Intell Med 46(1):55–66

    Article  Google Scholar 

  • Kalra J (2004) Medical errors: an introduction to concepts. Clin Biochem 37(12):1043–1051

    Article  Google Scholar 

  • Karacapilidis N, Pappis C (1997) A framework for group decision support systems: combining AI tools and OR techniques. Eur J Oper Res 103(2):373–388

    Article  MATH  Google Scholar 

  • Kavanagh BP (2009) The GRADE system for rating clinical guidelines. PLoS Med 6(9):5

    Article  Google Scholar 

  • Kim S, Haug P, Rocha R, Choi I (2008) Modeling the Arden syntax for medical decisions in XML. Int J Med Inform 77(10):650–656

    Article  Google Scholar 

  • Koton P (1988) Reasoning about evidence in causal explanations. In: Mitchell T, Smith R (eds) Proceedings of the national conference on artificial intelligence AAAI-88. AAAI Press, Menlo Park, pp 256–263

    Google Scholar 

  • Logan R, Scott P (1996) Uncertainty in clinical practice: implications for quality and costs of health care. Lancet 347:595–598

    Article  Google Scholar 

  • Lucas P (2004) Bayesian networks in biomedicine and health-care. Artif Intell Med 30(3):201–214

    Article  Google Scholar 

  • Mead P (2000) Clinical guidelines: promoting clinical effectiveness or a professional minefield? J Adv Nurs 31(1):110–116

    Article  Google Scholar 

  • Melle W (1978) MYCIN: a knowledge-based consultation program for infectious disease diagnosis. Int J Man Mach Stud 10(3):313–322

    Article  Google Scholar 

  • Miller M, Kearney N (2004) Guidelines for clinical practice: development, dissemination and implementation. Int J Nurs Stud 41(7):813–821

    Article  Google Scholar 

  • Neves J, Ribeiro J, Pereira P, Alves V, Machado J, Abelha A, Novais P, Analide C, Santos M, Fernández-Delgado M (2012) Evolutionary intelligence in asphalt pavement modeling and quality-of-information. Prog Artif Intel 1(1):119–135

    Article  Google Scholar 

  • Nikolopoulos C (1997) Expert systems: introduction to first and second generation and hybrid knowledge based systems. Marcel Dekker Inc, New York

    Google Scholar 

  • Novais P, Salazar M, Ribeiro J, Analide C, Neves J (2010) Decision making and quality-of-information. In: Corchado E, Novais P, Analide C, Sedano J (eds) Soft computing models in industrial and environmental applications, 5th international workshop (SOCO 2010). Springer—series advances in intelligent and soft computing, vol 73, pp 187–195

  • Novais P, Carneiro D, Gomes M, Neves J (2012) Non-invasive estimation of stress in conflict resolution environments. In: Demazeau Y, Müller J, Corchado J, Bajo J (eds) Advances on practical applications of agents and multi-agent systems—10th international conference on practical applications of agents and multi-agent systems (PAAMS 2012) Springer—series advances in intelligent and soft computing, vol 155, pp 153–160

  • Oliveira T, Costa A, Novais P, Neves J (2012) An interpretable guideline model to handle incomplete information. In: Omatu S, Paz Santana J, González S, Jose M, Bernardos A, Corchado J (eds) Computing distributed, intelligence artificial, 9th international conference (DCAI 2012). Springer—series advances in intelligent and, soft computing, pp 437–444

  • Ohno-Machado L, Gennari J, Murphy S, Jain N, Tu S, Oliver D et al (1998) The guideline interchange format. J Am Med Inform Assoc 5(4):357–372

    Article  Google Scholar 

  • Ollenschläger G, Marshall C, Qureshi S, Rosenbrand K, Burgers J et al (2004) Improving the quality of health care: using international collaboration to inform guideline programmes by founding the Guidelines International Network (GIN). Qual Saf Health Care 13(6):455–460

    Article  Google Scholar 

  • Pearl J (1986) Fusion, propagation, and structuring in belief networks. Artif Intell 29(3):241–288

    Article  MATH  MathSciNet  Google Scholar 

  • Peleg M, Wang D (2006) The guideline interchange format. Open clinical. http://www.openclinical.org/gmm_glif.html. Accessed 23 May 2012

  • Peleg M, Tu S, Bury J, Ciccarese P, Fox J, Greenes RA, Hall R, Johnson PD, Jones N, Kumar A, Miksch S, Quaglini S, Seyfang A, Shortliffe EH, Stefanelli M (2003) Comparing computer-interpretable guideline models: a case-study approach. J Am Med Inform Assoc 10(1):52–68

    Article  Google Scholar 

  • Perner P (1999) An architecture for a CBR image segmentationsystem. Eng Appl Artif Intell 12(6):749–59

    Article  Google Scholar 

  • Quaglini S, Stefanelli M, Cavallini A, Micieli G, Facino C, Mossa C (2000) Guideline-based careflow systems. Artif Intell Med 20(1):5–22

    Article  Google Scholar 

  • Ram P, Berg D, Tu S, Mansfield G, Ye Q, Abarbanel R, Beard N (2004) Executing clinical practice guidelines using the SAGE execution engine. Stud Health Technol Inform 107(1):251–255

    Google Scholar 

  • Rosenbrand K, Croonenborg J, Wittenberg J (2008) Guideline development. In: Teije A, Miksch S, Lucas P (eds) Computer-based medical guidelines and protocols: a primer and current trends. IOS Press, Amsterdam, pp 3–21

  • Rosenfeld R, Shiffman R (2006) Clinical practice guidelines: a manual for developing evidence-based guidelines to facilitate performance measurement and quality improvement. Otolaryngol Head Neck 135:1–28

    Article  Google Scholar 

  • Ruzicka M, Svatek V (2004) Mark-up based analysis of narrative guidelines with the Stepper tool. Stud Health Technol Inform 101:132–136

    Google Scholar 

  • Samwald M, Fehre K, Bruin J, Adlassnig K-P (2012) The Arden syntax standard for clinical decision support: experiences and directions. J Biomed Inform. doi:10.1016/j.jbi.2012.02.001

  • Schadow G, Mead C, Walker D (2006) The HL7 reference information model under scrutiny. Stud Health Technol Inform 124:151–156

    Google Scholar 

  • Schalkoff R (1990) Artificial intelligence: an engineering approach. McGraw-Hill, New York

    Google Scholar 

  • Seto E, Leonard KJ, Cafazzo JA, Barnsley J, Masino C, Ross HJ (2012) Developing healthcare rule-based expert systems: case study of a heart failure telemonitoring system. Int J Med Inform 81(8):556–565

    Article  Google Scholar 

  • Seyfang A, Martinez-Salvador B, Serban R, Wittenberg A, Miksch S, Marcos M, Teije AT, Rosenbrand K (2007) Maintaining formal models of living guidelines efficiently. In: Bellazzi R, Abu-Hanna A, Hunter J (eds) Proceedings of the 11th conference on artificial intelligence in medicine. Springer, Berlin, pp 441–445

  • Shahar Y, Miksch S, Johnson P (1998) The Asgaard project: a task-specific framework for the application and critiquing of time-oriented clinical guidelines. Artif Intell Med 14(1–2):29–51

    Article  Google Scholar 

  • Shahar Y, Young O, Shalom E, Galperin M, Mayaffit A, Moskovitch R, Hessing A (2004) A framework for a distributed, hybrid, multiple-ontology clinical-guideline library, and automated guideline-support tools. J Biomed Inform 37(5):325–344

    Google Scholar 

  • Shenoy P, Shafer G (1986) Propagating belief functions with local computations. IEEE Expert 1(3):43–52

    Article  Google Scholar 

  • Shiffman R, Karras B, Agrawal A, Chen R, Marenco L, Nath S (2000) GEM: a proposal for a more comprehensive guideline document model using XML. J Am Med Inform Assoc 5:488–98

    Article  Google Scholar 

  • Shortliffe E (1993) The adolescence of AI in medicine: will the field come of age in the ’90s? Artif Intell Med 5(2):93–106

    Article  Google Scholar 

  • Sonnenberg F, Hagerty C (2006) Computer-interpretable clinical practice guidelines: where are we and where are we going ? Method Inform Med 45(1):145–158

    Google Scholar 

  • Sordo M, Ogunyemi O, Boxwala A, Greenes R (2004) Description and status update on GELLO: a proposed standardized object-oriented expression language for clinical decision support. Stud Health Technol Inform 107(1):164–168

    Google Scholar 

  • Sutton D, Fox J (2003) The syntax and semantics of the PROforma guideline modeling language. J Am Med Inform Assoc 10:433–443

    Article  Google Scholar 

  • Straszecka E (2004) Medical knowledge representation in terms of IF-THEN rules and the Dempster-Shafer theory. In: Rutwoski L, Siekmann J, Tadeusiewicz R, Zadeh L (eds) Artificial intelligence and soft computing—ICAISC 2004, vol 3070. Springer, Berlin, pp 1056–1061

    Chapter  Google Scholar 

  • Thomson P (2000) Implementing evidence-based health care: the nurse teachers’ role in supporting the dissemination and implementation of SIGN clinical guidelines. Nurs Educ Today 20(3):207–217

    Article  Google Scholar 

  • Thomson R, Lavender M, Madhok R (1995) How to ensure that guidelines are effective. BMJ 311:237–242

    Article  Google Scholar 

  • Tu S, Campbell J, Glasgow J, Nyman M, McClure R, McClay J et al (2007) The SAGE guideline model: achievements and overview. J Am Med Inform Assoc 14(5):589–598

    Article  Google Scholar 

  • van Gerven M, Taal B, Lucas P (2008) Dynamic Bayesian networks as prognostic models for clinical patient management. J Biomed Inform 41:515–529

    Article  Google Scholar 

  • Vetternlein T, Mandl H, Adlassnig K-P (2010) Fuzzy Arden syntax: a fuzzy programming language for medicine. Artif Intell Med 49:1–19

    Article  Google Scholar 

  • Votruba P, Miksch S, Kosara R (2004) Facilitating knowledge maintenance of clinical guidelines and protocols. Stud Health Technol Inform 107(1):57–61

    Google Scholar 

  • Wang D, Peleg M, Tu S, Boxwala A, Ogunyemi O, Zeng Q et al (2004) Design and implementation of the GLIF3 guideline execution engine. J Biomed Inform 37(5):305–318

    Article  Google Scholar 

  • Weijden T, Boivin A, Burgers J, Schunemann H, Elwyn G (2011) Clinical practice guidelines and patient decision aids: an inevitable relationship. J Clin Epidemiol 65(6):584–589

    Article  Google Scholar 

  • Woolf S, Grol R, Hutchinson A, Eccles M, Grimshaw J (1999) Potential benefits, limitations and harms of clinical guidelines. Br Med J 318(7182):527–530

    Article  Google Scholar 

  • Zadeh L (1975) Fuzzy logic and approximate reasoning. Synthese 30(3):407–428

    Article  MATH  Google Scholar 

  • Zheng K, Padman R, Johnson M, Hasan S (2010) Guideline representation ontologies for evidence—based medicine practice. In: Khoumbati K, Dwivedi Y, Srivastava A, Lal B (eds) Handbook of research on advances in health informatics and electronic healthcare applications: global adoption and impact of information communication technologies. IGI Global, New York, pp 234–254

    Google Scholar 

  • Zhou Z, Jiang Y, Yang Y, Chen S (2002) Lung cancer cell identification based on artificial neural network ensembles. Artif Intell Med 24(1):25–36

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work is funded by national funds through the FCT—Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within project PEst-OE/EEI/UI0752/2011”. The work of Tiago Oliveria is supported by a doctoral grant by FCT (SFRH/BD/85291/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliveira, T., Novais, P. & Neves, J. Development and implementation of clinical guidelines: An artificial intelligence perspective. Artif Intell Rev 42, 999–1027 (2014). https://doi.org/10.1007/s10462-013-9402-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-013-9402-2

Keywords