Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

The effect of noise on foreground detection algorithms

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

Background segmentation methods are exposed to the effects of different kinds of noise due to the limitations of image acquisition devices. This type of distortion can worsen the performance of segmentation methods because the input pixel values are altered. In this paper we study how several well-known background segmentation methods perform when the input is corrupted with several levels of uniform and Gaussian noise. Furthermore, few situations are reported where instead of an inconvenience, adding noise to the input may be desirable to attenuate some limitations of a method. In this work, the performance of nine well known methods is studied under both kinds of noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. https://github.com/andrewssobral/bgslibrary.

  2. http://opencv.org/.

  3. http://www.lcc.uma.es/~ezeqlr/backsa/backsa.html.

  4. http://www.changedetection.net/.

  5. http://www.lcc.uma.es/%7Eezeqlr/noise/noise.html.

References

  • Alajlan N, Kamel M, Jernigan E (2004) Detail preserving impulsive noise removal. Sig Process Image Commun 19(10):993–1003

    Article  Google Scholar 

  • Bergmeir C, Hyndman RJ, Benítez JM (2016) Bagging exponential smoothing methods using STL decomposition and box–cox transformation. Int J Forecast 32(2):303–312

    Article  Google Scholar 

  • Bouwmans T (2014) Traditional and recent approaches in background modeling for foreground detection: an overview. Comput Sci Rev 11–12:31–66

    Article  MATH  Google Scholar 

  • Brown RG (1956) Exponential smoothing for predicting demand. Arthur D. Little Inc., Cambridge

    Google Scholar 

  • Brutzer S, Hoferlin B, Heidemann G (2011) Evaluation of background subtraction techniques for video surveillance. In: 2011 IEEE conference on computer vision and pattern recognition (CVPR), pp 1937–1944

  • Calderara S, Melli R, Prati A, Cucchiara R (2006) Reliable background suppression for complex scenes. In: Proceedings of the 4th ACM international workshop on video surveillance and sensor networks, ACM, New York, VSSN ’06, pp 211–214

  • Carmo JL, Rodrigues AJ (2004) Adaptive forecasting of irregular demand processes. Eng Appl Artif Intell 17(2):137–143

    Article  Google Scholar 

  • Charles B (2005) Image noise models. In: Bovik A (ed) Handbook of image and video processing (2nd edn), communications, networking and multimedia. Academic Press, Burlington, pp 397–409

    Chapter  Google Scholar 

  • Cucchiara G, Piccardi P (2003) Detecting moving objects, ghosts and shadows in video streams. IEEE Trans Pattern Anal Mach Intell 25(10):1337–1342

    Article  Google Scholar 

  • Dengwen Z, Wengang C (2008) Image denoising with an optimal threshold and neighbouring window. Pattern Recogn Lett 29(11):1694–1697

    Article  Google Scholar 

  • El Baf F, Bouwmans T, Vachon B (2008a) A fuzzy approach for background subtraction. In: 15th IEEE international conference on image processing, 2008. ICIP 2008

  • El Baf F, Bouwmans T, Vachon B (2008b) Fuzzy integral for moving object detection. In: IEEE international conference on fuzzy systems, 2008. FUZZ-IEEE 2008. (IEEE world congress on computational intelligence), pp 1729–1736

  • Elgammal AM, Harwood D, Davis LS (2000) Non-parametric model for background subtraction. In: Proceedings of the 6th European conference on computer vision—part II, Springer, London, ECCV ’00, pp 751–767

  • Figueiredo M, Bioucas-Dias J, Nowak R (2007) Majorization–minimization algorithms for wavelet-based image restoration. IEEE Trans Image Process 16(12):2980–2991

    Article  MathSciNet  Google Scholar 

  • Gardner ES Jr (2006) Exponential smoothing: the state of the art—part II. Int J Forecast 22(4):637–666

    Article  Google Scholar 

  • Guo Y, Hastie T, Tibshirani R (2007) Regularized linear discriminant analysis and its application in microarrays. Biostatistics 8(1):86–100

    Article  MATH  Google Scholar 

  • Heikkila M, Pietikainen M (2006) A texture-based method for modeling the background and detecting moving objects. IEEE Trans Pattern Anal Mach Intell 28(4):657–662

    Article  Google Scholar 

  • Holt CC (2004) Forecasting seasonals and trends by exponentially weighted moving averages. Int J Forecast 20(1):5–10

    Article  Google Scholar 

  • Jensen A, Loog M, Solberg A (2010) Using multiscale spectra in regularizing covariance matrices for hyperspectral image classification. IEEE Trans Geosci Remote Sens 48(4):1851–1859

    Article  Google Scholar 

  • Kang W, Lee E, Chea E, Katsaggelos A, Paik J (2013) Compressive sensing-based image denoising using adaptive multiple sampling and optimal error tolerance. In: 2013 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 2503–2507

  • López-Rubio E (2010) Restoration of images corrupted by Gaussian and uniform impulsive noise. Pattern Recogn 43(5):1835–1846

    Article  MATH  Google Scholar 

  • López-Rubio E, Luque-Baena RM (2011) Stochastic approximation for background modelling. Comput Vis Image Underst 115(6):735–749

    Article  Google Scholar 

  • Maddalena L, Petrosino A (2008) A self-organizing approach to background subtraction for visual surveillance applications. IEEE Trans Image Process 17(7):1168–1177

    Article  MathSciNet  Google Scholar 

  • Moghaddam B, Pentland A (1997) Probabilistic visual learning for object representation. IEEE Trans Pattern Anal Mach Intell 19(7):696–710

    Article  Google Scholar 

  • Nounou MN, Bakshi BR (1999) On-line multiscale filtering of random and gross errors without process models. AIChE J 45(5):1041–1058

    Article  Google Scholar 

  • Oliver N, Rosario B, Pentland A (2000) A bayesian computer vision system for modeling human interactions. IEEE Trans Pattern Anal Mach Intell 22(8):831–843

    Article  Google Scholar 

  • Powell WB (2007) Approximate dynamic programming. Wiley, London

    Book  MATH  Google Scholar 

  • Sayed-Mouchaweh M et al (2012) Learning in non-stationary environments: methods and applications. Springer, Berlin

    Book  MATH  Google Scholar 

  • Schneider T (2001) Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values. J Clim 14:853–871

    Article  Google Scholar 

  • Singh S (1999) Noise impact on time-series forecasting using an intelligent pattern matching technique. Pattern Recogn 32(8):1389–1398

    Article  Google Scholar 

  • Singh S (2000) Noisy time-series prediction using pattern recognition techniques. Comput Intell 16(1):114–133

    Article  Google Scholar 

  • Sobral A, Bouwmans T (2014) Bgs library: A library framework for algorithm’s evaluation in foreground/background segmentation. In: Background modeling and foreground detection for video surveillance. CRC Press, Taylor and Francis Group, Boca Raton, FL

  • Sobral A, Vacavant A (2014) A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos. Comput Vis Image Underst 122:4–21

    Article  Google Scholar 

  • Srikrishna A, Reddy B, Pompapathi M (2016) Pixon based image denoising scheme by preserving exact edge locations. J Inst Eng (India) Ser B 97(3):395–403

  • Stauffer C, Grimson W (1999) Adaptive background mixture models for real-time tracking. In: Proceedings of IEEE international conference on computer vision and pattern recognition, pp 246–252

  • Tan MC, Wong SC, Xu JM, Guan ZR, Zhang P (2009) An aggregation approach to short-term traffic flow prediction. IEEE Trans Intell Transp Syst 10(1):60–69

    Article  Google Scholar 

  • Turrado García F, García Villalba LJ, Portela J (2012) Intelligent system for time series classification using support vector machines applied to supply-chain. Expert Syst Appl 39(12):10,590 – 10,599

  • Wren C, Azarbayejani A, Darrell T, Pentl A (1997) Pfinder: real-time tracking of the human body. IEEE Trans Pattern Anal Mach Intell 19(7):780–785

    Article  Google Scholar 

  • Yager RR (2013) Exponential smoothing with credibility weighted observations. Inf Sci 252:96–105

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang JS, Huang XF, Zhou CH (2007) An improved kernel regression method based on Taylor expansion. Appl Math Comput 193(2):419–429

    MathSciNet  MATH  Google Scholar 

  • Zivkovic Z (2004) Improved adaptive gaussian mixture model for background subtraction. In: Proceedings of the pattern recognition, 17th international conference on (ICPR’04) volume 2, IEEE Computer Society, Washington, DC, USA, ICPR ’04, pp 28–31

  • Zivkovic Z, van der Heijden F (2006) Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recogn Lett 27(7):773–780

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the Ministry of Economy and Competitiveness of Spain under grant TIN2014-53465-R, project name Video surveillance by active search of anomalous events. It is also partially supported by the Autonomous Government of Andalusia (Spain) under projects TIC-6213, project name Development of Self-Organizing Neural Networks for Information Technologies; and TIC-657, project name Self-organizing systems and robust estimators for video surveillance. Finally, it is partially supported by the Autonomous Government of Extremadura (Spain) under the project IB13113. All of them include funds from the European Regional Development Fund (ERDF). The authors thankfully acknowledge the computer resources, technical expertise and assistance provided by the SCBI (Supercomputing and Bioinformatics) center of the University of Málaga and by the COMPUTAEX/CenitS center of the Autonomous Government of Extremadura.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ezequiel López-Rubio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Rubio, F.J., López-Rubio, E., Molina-Cabello, M.A. et al. The effect of noise on foreground detection algorithms. Artif Intell Rev 49, 407–438 (2018). https://doi.org/10.1007/s10462-016-9525-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-016-9525-3

Keywords