Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Brain structural disorders detection and classification approaches: a review

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

This paper is an effort to encapsulate the various developments in the domain of different unsupervised, supervised and half supervised brain anomaly detection approaches or techniques proposed by the researchers working in the domain of the Medical image segmentation and classification. As researchers are constantly working hard in the domain of image segregation, interpretation and computer vision in order to automate the task of tumour segmentation, anomaly detection, classification and other structural disorder prediction at an early stage with the aid of computer. The different medical imaging modalities are used by the doctors in order to diagnose the brain tumour and other structural brain disorders which are an integral part of diagnosis and prognosis process. When these different medical image modalities are used along with various image segmentation methods and machine learning approaches tends to perform brain structural disorder detection and classification in a semi-automated or fully automated manner with high accuracy. This paper presents all such approaches using various medical image modalities for the accurate detection and classification of brain tumour and other brain structural disorders. In this paper, all the major phases of any brain tumour or brain structural disorder detection and classification approach is covered begin with the comparison of various medical image pre-processing techniques then major segmentation approaches followed by the approaches based on machine learning. This paper also presents an evaluation and comparison among the various popular texture and shape based feature extraction methods used in combination with different machine learning classifiers on the BRATS 2013 dataset. The fusion of MRI modalities used along with the hybrid features extraction methods and ensemble model delivers the best result in terms of accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Adams R, Bischof L (1994) Seeded region growing. IEEE Trans Pattern Anal Mach Intell 16:641–647

    Google Scholar 

  • Adeli E, Shi F, An L, Wee CY, Wu G, Wang T et al (2016) Joint feature-sample selection and robust diagnosis of Parkinson’s disease from MRI data. J Neuroimage 141:206–219

    Google Scholar 

  • Adhikari SK, Sing JK, Basu DK, Nasipuri M (2015) Conditional spatial fuzzy C-means clustering algorithm for segmentation of MRI images. Appl Soft Comput 34:758–769

    Google Scholar 

  • Ain Q, Jaffar MA, Choi TS (2014) Fuzzy anisotropic diffusion based segmentation and texture based ensemble classification of brain tumor. Appl Soft Comput 21:330–340. https://doi.org/10.1016/j.asoc.2014.03.019

    Article  Google Scholar 

  • AlBadawy EA, Saha A, Mazurowski MA (2018) Deep learning for segmentation of brain tumours: impact of cross-institutional training and testing. Med Phys 45(3):1150–1158

    Google Scholar 

  • Alexander ME, Baumgartner R, Summers AR, Windischberger C, Klarhoefer M, Moser E, Somorjai RL (2000) A wavelet-based method for improving signal-to-noise ratio and contrast in MR images. Magn Reson Imaging 18:169–180

    Google Scholar 

  • Alzheimer’s Disease Neuro-Imaging (ADNI) public database http://www.loni.ucla.edu/ADNI/Data. Accessed 20 Mar 2019

  • Amin J, Sharif M, Raza M, Saba T, Anjum MA (2019) Brain tumor detection using statistical and machine learning method. Comput Methods Programs Biomed. https://doi.org/10.1016/j.cmpb.2019.05.015

    Article  Google Scholar 

  • Amoroso N, La Rocca M, Monaco A, Bellotti R, Tangaro S (2018) Complex networks reveal early MRI markers of Parkinson’s disease. Med Image Anal 48:12–24. https://doi.org/10.1016/j.media.2018.05.004

    Article  Google Scholar 

  • Anaraki AK, Ayati M, Kazemi F (2019) Magnetic resonance imaging-based brain tumour grades classification and grading via convolutional neural networks and genetic algorithm. J Bio-Cybern Biomed Eng 39:63–74. https://doi.org/10.1016/j.bbe.2018.10.004

    Article  Google Scholar 

  • Article on Neuroimaging (2019) https://en.wikipedia.org/wiki/Neuroimaging. Accessed on 12 March 2019

  • Bao P, Zhang L (2003) Noise reduction for magnetic resonance images via adaptive multi-scale products thresholding. IEEE Trans Med Imaging 22:1089–1099

    Google Scholar 

  • BIRN Data Repository http://fbirnbdr.birncommunity.org:8080/BDR/, supported by grants to the Function BIRN (U24-RR021992). Accessed 20 Mar 2019

  • Buendia P, Taylor T, Ryan M, John N (2013) A grouping artificial immune network for segmentation of tumor images. Paper presented at the Proceedings of NCI-MICCAI Challenge on Multimodal Brain Tumor Segmentation (BRATS 2013), Nagoya, Japan

  • Castro E, Gupta CN, Martinez-Ramon M, Calhoun VD, Arbabshirani MR, Turner J (2014) Identification of patterns of gray matter abnormalities in schizophrenia using source-based morphometry and bagging. In: Conf Proc IEEE Eng Med Biology Society, pp 1513–1516

  • Chang J, Zhang L, Gu N, Zhang X, Minquan Yin R, Meng Q (2019) A mix-pooling CNN architecture with FCRF for brain tumor segmentation. J Vis Commun Image Represent 58:316–322. https://doi.org/10.1016/j.jvcir.2018.11.047

    Article  Google Scholar 

  • Chen S, Ding C, Liu M (2019) Dual-force convolutional neural networks for accurate brain tumor segmentation. J Pattern Recogn. https://doi.org/10.1016/j.patcog.2018.11.009

    Article  Google Scholar 

  • Cheng H, Newman S, Goni J, Kent JS, Howell J, Bolbecker A et al (2015) Nodal centrality of functional network in the differentiation of schizophrenia. Schizophr Res 168(1–2):345–352

    Google Scholar 

  • Choi H, Jin KH (2018) Alzheimer’s disease Neuroimaging: predicting cognitive decline with deep learning of brain metabolism and amyloid imaging. Behav Brain Res 344:103–109

    Google Scholar 

  • Chu WL, Huang MW, Jian BL, Hsu CY, Cheng KS (2016) A correlative classification study of schizophrenic patients with results of clinical evaluation and structural magnetic resonance images. Behav Neurol 2016:7849526

    Google Scholar 

  • Chuang KS, Tzeng HL, Chen S, Wu J, Chen TJ (2006) Fuzzy c-means clustering with spatial information for image segmentation. Comput Med Imaging Graph 30(1):9–15

    Google Scholar 

  • Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P et al (2013) The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 26(6):1045–1057

    Google Scholar 

  • Cordier N, Menza B, Delingette H, Ayache N (2013) Patch-based Segmentation of Brain Tissues. Paper presented at the Proceedings of NCI-MICCAI Challenge on Multimodal Brain Tumor Segmentation (BRATS 2013), Nagoya, Japan

  • Davy A, Havaei M, Warder-Farley D et al (2014) Brain tumour segmentation with deep neural networks. In: Proceedings MICCAI-BRATS, Boston, MA, USA

  • Doan NT, Engvig A, Zaske K, Persson K, Lund MJ, Kaufmann T et al (2017) Distinguishing early and late brain aging from the Alzheimer’s disease spectrum: consistent morphological patterns across independent samples. Neuroimaging 158:282–295

    Google Scholar 

  • Dvorak P, Menze B (2015) Structured prediction with convolutional neural networks for multimodal brain tumour segmentation. In: Proceedings of MICCAI-BRATS, Munich, Germany, pp 13–24

  • Dyrba M, Grothe M, Kirste T, Teipel SJ (2015) Multimodal analysis of functional and structural disconnection in Alzheimer’s disease using multiple kernels SVM. Hum Brain Map 36(6):2118–2131

    Google Scholar 

  • Farzan A, Mashohor S, Ramli AR, Mahmud R (2015) Boosting diagnosis accuracy of Alzheimer’s disease using high dimensional recognition of longitudinal brain atrophy patterns. Behav Brain Res 290:124–130

    Google Scholar 

  • Festa J, Pereira S, Maria J, Sousa N, Silva C (2013) Automatic Brain Tumor Segmentation of Multi-sequence MR images using Random Decision Forest. Paper presented at the Proceedings of NCIMICCAI Challenge on Multimodal Brain Tumor Segmentation (BRATS 2013), Nagoya, Japan

  • Garali I, Adel M, Bourennane S, Guedj E (2018) Histogram-based features selection and volume of interest ranking for brain PET image classification. IEEE J Transl Eng Health Med 6:2100212

    Google Scholar 

  • Glozman T, Solomon J, Pestilli F, Guibas L (2017) Alzheimer’s diseaseNeuroimaging: shape-attributes of brain structures as biomarkers for Alzheimer’s disease. J Alzheimer’s Dis 56(1):287–295

    Google Scholar 

  • Goceri E (2011) PCA based bayesian approach for automatic multiple sclerosis lesion detection. In: The Intl symposium on computing in informatics and mathematics (ISCIM 2011), Tirana-Durres, Albania, pp 687–694

  • Goceri E (2017) Intensity normalization in brain MR images using spatially varying distribution matching. In: 11th Intl conference on computer graphics, visualization, computer vision and image processing (CGVCVIP 2017), Lisbon, Portugal, pp 300–304

  • Goceri E (2018a) Fully automated and adaptive intensity normalization using statistical features for brain MR images. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 14(1):125–134. https://doi.org/10.18466/cbayarfbe.384729

    Article  Google Scholar 

  • Goceri E (2018b) Biomedical information technology: image based computer aided diagnosis systems. In: International conference on advanced technologies, Antalya, Turkey, p 132

  • Goceri E (2018c) Formulas behind deep Learning success. In: International conference on applied analysis and mathematical modeling (ICAAMM2018), Istanbul, Turkey, p 156

  • Goceri E (2019) Diagnosis of Alzheimer’s disease with Sobolev gradient based optimization and 3D convolutional neural network. Int J Numer Method Biomed Eng 35:e3225. https://doi.org/10.1002/cnm.3225

    Article  MathSciNet  Google Scholar 

  • Goceri E, Goceri N (2017) Deep learning in medical image analysis: recent advances and future trends. In: 11th international conference on computer graphics, visualization, computer vision and image processing (CGVCVIP 2017), Lisbon, Portugal, pp 305–311

  • Goceri E, Songul C (2017) Automated detection and extraction of skull from MR head images: preliminary results. In: Int. Conf. on computer science and engineering (UBMK), Antalya, Turkey, pp 171–176. https://doi.org/10.1109/ubmk.2017.8093370

  • Goetz M, Weber C, Bloecher J, Stieltjes B, Meinzer HP, Maier-Hein K (2014) Extremely randomized trees based brain tumor segmentation. Paper presented at the Proceeding of BRATS Challenge—MICCAI

  • Golshan HM, Hasanzedeh RPR, Yousefzadeh SC (2013) An MRI de-noising method using data redundancy and local SNR estimation. Magn Reson Imaging 31:1206–1217

    Google Scholar 

  • Guo H, Zhang F, Chen J, Xu Y, Xiang J (2017) Machine learning classification combining multiple features of a hyper-network of fMRI data in Alzheimer’s disease. Front Neurosci 11:615

    Google Scholar 

  • Gupta N, Khanna P (2017) A non-invasive and adaptive CAD system to detect brain tumor from T2-weighted MRIs using customized Otsu’s thresholding with prominent features and supervised learning. J Signal Process Image Commun. https://doi.org/10.1016/j.image.2017.05.013

    Article  Google Scholar 

  • Gupta N, Bhatele P, Khanna P (2017) Identification of Gliomas from brain MRI through adaptive segmentation and run length of centralized patterns. J Comput Sci. https://doi.org/10.1016/j.jocs.2017.02.009

    Article  Google Scholar 

  • Gupta N, Bhatele P, Khanna P (2019) Glioma detection on brain MRIs using texture and morphological features with ensemble learning. J Biomed Signal Process Control 47:115–125. https://doi.org/10.1016/j.bspc.2018.06.003

    Article  Google Scholar 

  • Harvard Medical School Data http://www.med.harvard.edu/AANLIB/. Accessed 22 Mar 2019

  • Havaei M, Davy A, Warde-Farley D et al (2017) Brain tumour segmentation with deep neural networks. Med Image Anal 35:18–31

    Google Scholar 

  • Hemanth DJ, Anitha J, Naaji A, Geman O, Popescu DE, Son LH (2019) A modified deep convolutional neural network for abnormal brain image classification. IEEE Access. https://doi.org/10.1109/ACCESS.2018.2885639

    Article  Google Scholar 

  • Houmani N, Dreyfus G, Vialatte FB (2015) Epoch-based entropy for early screening of Alzheimer’s disease. Int J Neural Syst 25(08):1550032

    Google Scholar 

  • Hsieh KLC, Lo CM, Hsiao CJ (2017) Computer-aided grading of gliomas based on local and global MRI features. Comput Methods Programs Biomed 139:1–38

    Google Scholar 

  • http://www.cma.mgh.harvard.edu/ibsr/. Accessed 22 Mar 2019

  • http://www.bic.mni.mcgill.ca/brainweb/. Accessed 22 Mar 2019

  • http://brainmaps.org/index.php. Accessed 22 Mar 2019

  • http://cancerimagingarchive.net/ of the National Cancer Institute, a portal containing 21 images of TCGA patients for image analysis. Accessed 22 Mar 2019

  • https://www.financialexpress.com/india-news/doctor-population-ratio-inindia-one-allopathic-doctor-for-11082-people-official-data-shows-bihar-up-worst-.Hit/1213243. Accessed on 12 March 19

  • Hu Q, Hou Z, Nowinski W (2006) Supervised range-constrained thresholding. IEEE Trans Image Process 15:228–240

    Google Scholar 

  • Hussain S, Anwar SM, Majid M (2018) Segmentation of glioma tumors in brain using deep convolutional neural network. Neurocomputing 282:248–261

    Google Scholar 

  • IXI Dataset http://brain-development.org/ixi-dataset/. Accessed 25 Mar 2019

  • Ji ZX, Sun QS, Xia DSA (2011) Modified possibilistic fuzzy c-means clustering algorithm for bias field estimation and segmentation of brain MR image. Comput Med Imaging Graph 35(5):383–397

    Google Scholar 

  • Ji Z, Xia Y, Sun Q, Chen Q, Feng D (2014a) Adaptive scale fuzzy local Gaussian mixture model for brain MR image segmentation. Neurocomputing 134:60–69

    Google Scholar 

  • Ji Z, Liu J, Cao G, Sun Q, Chen Q (2014b) Robust spatially constrained fuzzy c-means algorithm for brain MR image segmentation. Pattern Recogn 47(7):2454–2466

    Google Scholar 

  • Joliot M, Mazoyer BM (1993) Three-dimensional segmentation and interpolation of magnetic resonance brain images. IEEE Trans Med Imaging 12(2):269–277

    Google Scholar 

  • Jui SL, Zhang S, Xiong W, Yu F, Fu M, Wang D, Hassanien AE, Xiao X (2016) Brain MRI tumor segmentation with 3D intracranial structure deformation features. IEEE Intell Syst 31:66–76. https://doi.org/10.1109/MIS.2015.93

    Article  Google Scholar 

  • Juneja A, Rana B, Agrawal RK (2018) A novel fuzzy rough selection of non-linearly extracted features for schizophrenia diagnosis using fMRI. Comput Methods Programs Biomed 155:139–152. https://doi.org/10.1016/j.cmpb.2017.12.001

    Article  Google Scholar 

  • Kamnitsas K, Ledig C, Newcombe VFJ et al (2017) Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 36:61–78

    Google Scholar 

  • Kapur JN, Sahoo PK, Wong AK (1985) A new method for gray-level picture thresholding using the entropy of the histogram. Comput Vis Graph Image Process 29:273–285

    Google Scholar 

  • Kaus MR, Warfield SK, Nabavi A, Black PM, Jolesz FA, Kikinis R (2001a) Automated segmentation of MRI images of brain tumors. Radiology 218:586–591

    Google Scholar 

  • Kaus M, Warfield S, Nabavi A, Black P, Jolesz F, Kikinis R (2001b) Automated segmentation of MRI of brain tumors. Radiology 218(2):586–591

    Google Scholar 

  • Krinidis S, Chatzis VA (2010) Robust fuzzy local information C means clustering algorithm. IEEE Trans Image Process 19(5):1328–1337

    MathSciNet  MATH  Google Scholar 

  • Li C, Xu C, Anderson AW, Gore JC (2009) MRI tissue classification and bias field estimation based on coherent local intensity clustering: A unified energy minimization framework. Information Processing in Medical Imaging. Springer, Berlin, pp 288–299

    Google Scholar 

  • Li M, Qin Y, Gao F, Zhu W, He X (2014a) Discriminative analysis of multivariate features from structural MRI and diffusion tensor images. Magn Reson Imaging 32(8):1043–1051

    Google Scholar 

  • Li M, Oishi K, He X, Qin Y, Gao F, Mori S et al (2014b) An efficient approach for differentiating Alzheimer’s disease from normal elderly based on multicentre MRI using gray-level invariant features. J PLoS One 9(8):e105563

    Google Scholar 

  • Li Y, Jiao L, Shang R, Stolkin R (2015) Dynamic-context cooperative quantum-behaved particle swarm optimization based on multilevel thresholding applied to medical image segmentation. Inf Sci 294:408–422

    MathSciNet  Google Scholar 

  • Liao L, Lin TS (2007) A fast spatial constrained fuzzy kernel clustering algorithm for MRI brain image segmentation. Wavel Anal Pattern Recogn 1:82–87

    Google Scholar 

  • Lyksborg M, Puonti O, Agn M, Larsen R (2015) An ensemble of 2D convolutional neural networks for tumor segmentation. In: Scandinavian conference on image analysis, SCIA, p 9127

  • Ma J, Plonka G (2007) Combined curve let shrinkage and nonlinear anisotropic diffusion. IEEE Trans Image Process 16:2198–2206

    MathSciNet  Google Scholar 

  • Maggioni M, Katkovnik V, Egiazarian K, Foi A (2013) Nonlocal transform-domain filter for volumetric data de-noising and reconstruction. IEEE Trans Image Process 22(1):119–133

    MathSciNet  MATH  Google Scholar 

  • Maitra M, Chatterjee A (2008) A novel technique for multilevel optimal magnetic resonance brain image thresholding using bacterial foraging. Measurement 41(10):1124–1134

    Google Scholar 

  • Manikandan S, Ramar K, Iruthayarajan MW, Srinivasagan KG (2014) Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm. Measurement 47:558–568

    Google Scholar 

  • Mekhmoukh A, Mokrani K (2015) Improved fuzzy C-means based Particle Swarm Optimization initialization and outlier rejection with level set methods for MR brain image segmentation. Comput Methods Programs Biomed 122(2):266–281

    Google Scholar 

  • Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, Burren Y, Porz N, Slotboom J, Wiest R, Lanczi L, Gerstner E, Weber MA, Arbel T et al (2015) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34:1993–2024. https://doi.org/10.1109/tmi.2014.2377694

    Article  Google Scholar 

  • Mohan J, Krishnaveni V, Guo Y (2014) A survey on the magnetic resonance image de-noising methods. Biomed Signal Process Control 9:56–69

    Google Scholar 

  • Morabito FC, Campolo M, Ieracitano C, Ebadi JM, Bonanno L, Bramanti A, Bramanti P (2016) Deep convolutional neural networks for classification of mild cognitive impaired and Alzheimer’s disease patients from scalp EEG recordings. In: 2016 IEEE 2nd international forum on research and technologies for society and industry leveraging a better tomorrow (RTSI). https://doi.org/10.1109/rtsi.2016.7740576

  • Mustaqeem A, Javed A, Fatima T (2012) An efficient brain tumor detection algorithm using watershed & thresholding based segmentation. Int J Image Graph Signal Process 4(10):34–39

    Google Scholar 

  • Nabizadeh M, Kubat M (2015) Brain tumors detection and segmentation in MR images: Gabor wavelet vs. statistical features. J Comput Electr Eng 45:286–301. https://doi.org/10.1016/j.compeleceng.2015.02.007

    Article  Google Scholar 

  • Ni H, Zhou L, Ning X, Wang L (2016) Alzheimer’s disease Neuroimaging: exploring multi fractal-based features for mild Alzheimer’s disease classification. Magn Reson Med 76(1):259–269

    Google Scholar 

  • Oliveira FPM, Faria DB, Costa DC, Castelo-Branco M, Tavares JMRS (2017) Extraction, selection and comparison of features for an effective automated computer-aided diagnosis of Parkinson’s disease based on FP-CIT SPECT images. Eur J Nucl Med Mol Imaging 45(6):1052–1062. https://doi.org/10.1007/s00259-017-3918-7

    Article  Google Scholar 

  • Orban P, Dansereau C, Desbois L, Mongeau-Pérusse V, Giguère CÉ, Nguyen H, Bellec P (2018) Multisite generalizability of schizophrenia diagnosis classification based on functional brain connectivity. Schizophr Res 192:167–171. https://doi.org/10.1016/j.schres.2017.05.027

    Article  Google Scholar 

  • Otsu N (1975) A threshold selection method from gray-level histograms. Automatica 11:23–27

    Google Scholar 

  • Pedano N, Flanders AE, Scarpace L, Mikkelsen T, Eschbacher JM, Hermes B et al (2016) Radiology data from the cancer genome atlas low grade glioma [TCGA-LGG] collection. Cancer Imaging Archive. https://doi.org/10.7937/K9/TCIA.2016.L4LTD3TK. Accessed 29 Mar 2019

    Article  Google Scholar 

  • Peng B, Wang S, Zhou Z, Liu Y, Tong B, Zhang T et al (2017) A multilevel-ROI-features-based machine learning method for detection of morph metric biomarkers in Parkinson’s disease. Neurosci Lett 651:88–94

    Google Scholar 

  • Pereira S, Pinto A, Alves V, Silva CA (2016) Brain tumor segmentation using convolutional neural networks in MR images. IEEE Trans Med Imaging 35(5):1240–1251

    Google Scholar 

  • Pereira S, Meier R, McKinley R, Wiest R, Alves V, Silva CA, Reyes M (2018) Enhancing interpretability of automatically extracted machine learning features: application to a RBM-Random Forest system on brain lesion segmentation. Med Image Anal. https://doi.org/10.1016/j.media.2017.12.009

    Article  Google Scholar 

  • Pergola G, Trizio S, Di Carlo P, Taurisano P, Mancini M, Amoroso N, Blasi G (2017) Grey matter volume patterns in thalamic nuclei are associated with familial risk for schizophrenia. Schizophr Res 180:13–20. https://doi.org/10.1016/j.schres.2016.07.005

    Article  Google Scholar 

  • Pinaya WHL, Gadelha A, Doyle OM, Noto C, Zugman A, Cordeiro Q, Sato JR (2016) Using deep belief network modelling to characterize differences in brain morphometry in schizophrenia. Sci Rep 6(1):38897. https://doi.org/10.1038/srep38897

    Article  Google Scholar 

  • Qadar MA, Zhaowen Y (2014) Brain tumour segmentation: a comparative analysis. IJCSI Int J Comput Sci Issues 11(6):1694-0784

    Google Scholar 

  • Rajan J, den Dekker AJ, Sijbers J (2014) A new non-local maximum likelihood estimation method for Rician noise reduction in magnetic resonance images using the Kolmogorov–Smirnov test. Signal Process 103:16–23

    Google Scholar 

  • Rembrandt dataset. https://wiki.cancerimagingarchive.net/display/Public/REMBRAND. Accessed 25 Mar 2019

  • Rexilius J, Hahn H, Klein J, Lentschig M, Peitgen H (2007) Multispectral brain tumour segmentation based on histogram model adaptation. In: SPIE Conf Med Image Comput, p 65140V1-10

  • Reza S, Iftekharuddin KM (2013) Multi-class abnormal brain tissue segmentation using texture features. Paper presented at the Proceedings of NCI-MICCAI Challenge on Multimodal Brain Tumour Segmentation (BRATS 2013), Nagoya, Japan

  • Reza S, Iftekharuddin KM (2014) Improved brain tumor tissue segmentation using texture features. Paper presented at the Proceeding of BRATS Challenge—MICCAI

  • Rondina JM, Ferreira LK, de Souza Duran FL, Kubo R, Ono CR, Leite CC et al (2018) Selecting the most relevant brain regions to discriminate Alzheimer’s disease patients from healthy controls using multiple kernel learning: a comparison across functional and structural imaging modalities and atlases. Neuroimage Clin 17:628–641

    Google Scholar 

  • Saha P, Udupa J (2001) Optimum image thresholding via class uncertainty and region homogeneity. IEEE Trans Pattern Anal Mach Intell 12(7):689–706

    Google Scholar 

  • Salman Y (2009) Modified technique for volumetric brain tumour measurements. J Biomed Sci Eng 2:16–19

    Google Scholar 

  • Salman Y, Badawi A, Assal M, Alian S (2005) New automatic technique for tracking brain tumor response. In: International conference on biological and medical physics, pp 1–4

  • Sanchez A, Mammone N, Morabito FC, Marino S, Adeli H (2019) A novel methodology for automated differential diagnosis of mild cognitive impairment and the Alzheimer’s disease using EEG signals. J Neurosci Methods 322:88–95

    Google Scholar 

  • Sathya PD, Kayalvizhi R (2011) Optimal segmentation of brain MRI based on adaptive bacterial foraging algorithm. Neurocomputing 74(14):2299–2313

    Google Scholar 

  • Sato M, Lakare S, Wan M, Kaufman A (2000) A gradient magnitude based region growing algorithm for accurate segmentation. Int Conf Image Process 3:448–451

    Google Scholar 

  • Scarpace L, Flanders AE, Jain R, Mikkelsen T, Andrews DW (2015) Data from REMBRANDT. Cancer Imaging Arch 10:K9

    Google Scholar 

  • Scarpace L, Mikkelsen T, Cha S, Rao S, Tekchandani S, Gutman D et al (2016) Radiology data from the cancer genome atlas glioblastoma multiforme [TCGA-GBM] collection. Cancer Imaging Archive. https://doi.org/10.7937/K9/TCIA.2016.RNYFUYE9. Accessed 30 Mar 2019

    Article  Google Scholar 

  • Schnack HG, Nieuwenhuis M, van Haren NE, Abramovic L, Scheewe TW, Brouwer RM et al (2014) Can structural MRI aid inclinical classification? A machine learning study in two independent samples of patients with schizophrenia, bipolar disorder and healthy subjects. Neuroimage 84:299–306

    Google Scholar 

  • Shanthi KJ, Kumar MS (2007) Skull stripping and automatic segmentation of brain MRI using seed growth and threshold techniques. In: International conference on intelligent and advanced systems, Kuala Lumpur, Malaysia. https://doi.org/10.1109/ICIAS.2007.4658421

  • Sijbers J, Poot D, den Dekker AJ, Pintjens W (2007) Automatic estimation of the noise variance from the histogram of a magnetic resonance image. Phys Med Biol 52:1335–1348

    Google Scholar 

  • Sikka K, Sinha N, Singh PK, Mishra AK (2009) A fully automated algorithm under modified FCM framework for improved brain MR image segmentation. Magn Reson Imaging 27(7):994–1004

    Google Scholar 

  • Song G, Huang Z, Zhao Y, Zhao X, Liu Y, Bao M, Han J, Li P (2019) A noninvasive system for the automatic detection of gliomas based on hybrid features and PSO-KSVM. IEEE Access. https://doi.org/10.1109/ACCESS.2019.2894435

    Article  Google Scholar 

  • Stadlbauer A, Moser E, Gruber S, Buslei R, Nimsky C, Fahlbusch R, Ganslandt O (2004) Improved delineation of brain tumours: an automated method for segmentation based on pathologic changes of 1H-MRSI metabolites in gliomas. J Neuroimage 23:454–461

    Google Scholar 

  • Subashini MM, Sahoo SK, Sunil V, Easwaran S (2016) A non-invasive methodology for the grade identification of astrocytoma using image processing and artificial intelligence techniques. Expert Syst Appl 43:186–196

    Google Scholar 

  • Sung YC, Han KS, Song CJ, Noh SM, Park JW (2000) Threshold estimation for region segmentation on mri image of brain having the partial volume artifact. In: 5th international conference on signal processing proceedings, 2000. WCCC-ICSP 2000. IEEE, vol 2, pp 1000–1009

  • Taloa M, Baloglu UB, Yıldırıma O, Acharya UR (2019) Application of deep transfer learning for automated brain abnormality classification using MR images. J Cognit Syst Res 54:176–188. https://doi.org/10.1016/j.cogsys.2018.12.007

    Article  Google Scholar 

  • The Cancer Imaging Archive GBM dataset TCIA http://cancergenome.nih.gov/. Accessed 26 Mar 2019

  • The PPMI cohort will comprise 400 recently diagnosed PD and 200 healthy subjects followed longitudinally for clinical, imaging and bio specimen biomarker assessment using standardized data acquisition protocols at twenty-one clinical sites. https://www.ppmi-info.org/access-data-specimens/download-data/. Accessed 27 Mar 2019

  • Tustison NJ, Shrinidhi KL, Wintermark M, Durst CR, Kandel BM, Gee JC, Grossman MC, Avants BB (2015) Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumour segmentation (simplified) with ANTsR. Neuroinformatics 13:209–225. https://doi.org/10.1007/s12021-014-9245-2

    Article  Google Scholar 

  • Urban G, Bendszus M, Hamprecht F, Kleesiek J (2014) Multimodal brain tumor segmentation using deep convolutional neural networks. In: MICCAI BraTS (Brain Tumour Segmentation) Challenge. Proceedings, Winning Contribution 31–35, Boston, MA, USA

  • Vijayakumar C, Gharpure DC (2011) Development of image-processing software for automatic segmentation of brain tumors in MRI images. J Med Phys/Assoc Med Phys India 36(3):147

    Google Scholar 

  • Wang SH, Phillips P, Sui Y, Liu B, Yang M, Cheng H (2018) Classification of Alzheimer’s disease based on eight-layer convolutional neural network with leaky rectified linear unit and max pooling. J Med Syst 42(5):85

    Google Scholar 

  • Weaver JB, Xu Y, Healy DM, Cromwell LD (1991) Filtering noise from images with wavelet transforms. Magn Reson Imaging 21:288–295

    Google Scholar 

  • Wong KP (2005) Medical image segmentation: methods and applications in functional imaging. Handbook of Biomedical Image Analysis. Springer, Berlin, pp 111–182

    Google Scholar 

  • Zarogianni E, Storkey AJ, Johnstone EC, Owens DGC, Lawrie SM (2017) Improved individualized prediction of schizophrenia in subjects at familial high risk, based on neuroanatomical data, schizotypal and neurocognitive features. Schizophr Res 181:6–12. https://doi.org/10.1016/j.schres.2016.08.027

    Article  Google Scholar 

  • Zeng LL, Wang H, Hu P, Yang B, Pu W, Shen H et al (2018) Multi-site diagnostic classification of schizophrenia using discriminant deep learning with functional connectivity MRI. EBioMedicine 30:74–85

    Google Scholar 

  • Zikic D, Ioannou Y, Brown M, Criminisi A (2014) Segmentation of brain tumour tissues with convolutional neural networks. In: Proceedings of MICCAI workshop on multimodal brain tumor segmentation challenge (BRATS), Boston, Massachusetts, USA

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirti Raj Bhatele.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatele, K.R., Bhadauria, S.S. Brain structural disorders detection and classification approaches: a review. Artif Intell Rev 53, 3349–3401 (2020). https://doi.org/10.1007/s10462-019-09766-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-019-09766-9

Keywords