Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Accurate delay models of CMOS CML circuits for design optimization

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents accurate delay models of current-mode logic (CML) circuits for equation-based circuit optimization. We propose accurate edge-rate-dependent delay models of a CML buffer, a latch, and a multiplexer. Newly proposed delay models have compatibility with geometric programming and scalability for the hierarchical design of CML-based circuits, thereby enabling true constraint-driven equation-based design optimization. In order to validate these models, we show the modeling errors of unit CML gates over a wide range of delay and edge rates. N-stage CML buffers and a 28 Gb/s serializer in 45 nm CMOS technology are optimized for minimum power dissipation. The numerical experiments indicates that the proposed delay models can guarantee the intended operation of CML-based circuits when used in the equation-based design optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hershenson, M., Boyd, S., & Lee, T. H. (2001). Optimal design of a CMOS op-amp via geometric programming. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 20(1), 1–21.

    Article  Google Scholar 

  2. Colleran, D., Portmann, C., Hassibi, A., Crusius, C., Mohan, S., Boyd, S., et al. (2003). Optimization of phase-locked loop circuits via geometric programming. Proc. IEEE Custom Integrated Circuits Conference, 377–380.

  3. Eeckelaert, T., Daems, W., Gielen, G., & Sansen, W. (2004). Generalized simulation-based posynomial model generation for analog integrated circuits. Analog Integrated Circuits and Signal Processing, 40(3), 193–203.

    Article  Google Scholar 

  4. Hassan, H., Anis, M., & Elmarsry, M. (2005). Mos current mode circuits: Analysis, design and variability. IEEE Transactions on Very Large Scale Integrated (VLSI) Systems, 13(8), 885–898.

    Article  Google Scholar 

  5. Musa, O., & Shams, M. (2010). An efficient delay model for MOS current-mode logic automated design and optimization. IEEE Transactions on Circuits and Systems 1, Regular Papers, 57(8), 2041–2052.

    Article  MathSciNet  Google Scholar 

  6. Caruso, G. (2013). A delay model valid in all the regions of operation of the MOS transistor for the energy-efficient design of MCML gates. IEICE Electronics Express, 10(17), 1–10.

    Article  Google Scholar 

  7. Seckin, U., & Ken Yang, C. K. (2008). A comprehensive delay model for CMOS CML circuits. IEEE Transactions on Circuits and Systems 1, Regular Papers, 55(9), 2608–2618.

    Article  Google Scholar 

  8. Boyd, S., & Vendenberghe, L. (2003). Convex optimization. Cambridge: Cambridge University Press.

    Google Scholar 

  9. Kim, J., Vandenberghe, L., & Ken Yang, C. K. (2010). Convex piecewise-linear modeling method for circuit optimization via geometric programming. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 29(11), 1823–1827.

    Article  Google Scholar 

  10. Kim, J. (2013). A convex macromodeling of dynamic comparator for analog circuit synthesis. Analog Integrated Circuits and Signal Processing, 77(2), 299–305.

    Article  Google Scholar 

  11. Sturm, J., F. (1999). Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software, 1112, 625–633.

  12. Gray, P., Hurst, P., Lewis, S., & Meyer, R. (2010). Analysis and design of analog integrated circuits. New York: Wiley.

    Google Scholar 

  13. Kim, S. Y., & Wong, S. S. (2007). Closed-form RC and RLC delay models considering input rise time. IEEE Transactions on Circuits and Systems 1, Regular Papers, 54(9), 2001–2010.

    Article  Google Scholar 

  14. Mita, R., Palumbo, G., & Poli, M. (2007). Propagation delay of a RC chain with a ramp input. IEEE Transactions on Circuits and Systems 2, Express Briefs, 54(1), 66–70.

    Article  Google Scholar 

  15. Palaniappan, A., & Palermo, S. (2013). A design methodology for power efficiency optimization of high-speed equalized-electrical I/O architectures. IEEE Transactions on Very Large Scale Integrated (VLSI) Systems, 21(8), 1421–1431.

    Article  Google Scholar 

Download references

Acknowledgments

This paper was supported by Faculty Research Fund, Sungkyunkwan University, 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SoYoung Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, I., Kim, J. & Kim, S. Accurate delay models of CMOS CML circuits for design optimization. Analog Integr Circ Sig Process 82, 297–307 (2015). https://doi.org/10.1007/s10470-014-0460-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-014-0460-4

Keywords