Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Design of an ultra-sharp composite low-pass filter using analytical method

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

An ultra-sharp microstrip composite low-pass filter (LPF) with proper structure using analytical method is proposed. A composite LPF using image parameter method and lumped elements is designed is this paper. Then, quasi-lumped elements, such as: open-stub lines, high and low impedance lines and standard microstrip equations are utilized to microstrip implementation. In addition, parasitic substance of the quasi-lumped capacitors are compensated. Moreover, reduce the size of the microstrip filter, the curved microstrip lines are applied. A proposed composite LPF with a cutoff frequency of 1.3 GHz is designed and fabricated. The proposed device has great specifications, such as: ultra-sharp cutoff (600 dB/GHz), compact size (0.100λg × 0.168λg) and high suppression level in stopband (− 35 dB). The measured frequency responses of the proposed LPF, have good agreement with simulation results, which show the validity of the results. With this specifications the proposed filter is suitable for L-band applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pozar, D. M. (2011). Microwave engineering. New York: Wiley.

    Google Scholar 

  2. Roshani, S. (2017). A compact microstrip low-pass filter with ultra wide stopband using compact microstrip resonant cells. International Journal of Microwave and Wireless Technologies, 9(5), 1023–1027.

    Article  Google Scholar 

  3. Hong, J. S., & Lancaster, M. J. (2001). Microstrip filters for RF/microwave applications. New York: Wiley.

    Book  Google Scholar 

  4. Jarry, P., & Beneat, J. (2008). Advanced design techniques and realizations of microwave and RF filters. New York: Wiley.

    Book  Google Scholar 

  5. He, Y., Wu, X., & Liu, C. J. (2014). Novel miniaturized low-pass filters from artificial transmission line structures. Journal of Electromagnetic Waves and Applications, 28(10), 1269–1274.

    Article  Google Scholar 

  6. Khakzad, H. R., Sedighy, S. H., & Amirhosseini, M Kh. (2013). Design of compact SITLs low pass filter by using invasive weed optimization (IWO) technique. ACES Journal, 28(3), 228–233.

    Google Scholar 

  7. Zhang, P., & Li, M. (2016). A novel sharp roll-off microstrip lowpass filter with improved stopband and compact size using dual-plane structure. Microwave and Optical Technology Letters, 58(5), 1085–1088.

    Article  Google Scholar 

  8. Sarkar, D., Moyra, T., & Murmu, L. (2016). An ultra-wideband (UWB) bandpass filter with complementary split ring resonator for coupling improvement. International Journal of Electronics and Communications. https://doi.org/10.1016/j.aeue.2016.11.004.

    Google Scholar 

  9. Afzali, B., Karkhanechi, M. M., & Karimi, Gh. (2015). Design of compact microstrip lowpass filter with ultra-wide stopband using modified T-shaped resonator. International Journal of Microwave and Wireless Technologies, 7(6), 699–703.

    Article  Google Scholar 

  10. Singh, V., Killamshetty, V., & Mukherjee, B. (2016). Compact bandpass filter with quasi-elliptic response using stub loaded resonator. International Journal of Electronics and Communications. https://doi.org/10.1016/j.aeue.2016.12.012.

    Google Scholar 

  11. Koirala, G. R., & Shrestha, B. (2016). Compact dual-wideband bandstop filter using a stub-enclosed stepped-impedance resonator. International Journal of Electronics and Communications. https://doi.org/10.1016/j.aeue.2015.11.011.

    Google Scholar 

  12. Xiao, Y., & Li, L. (2015). A very compact and sharp roll-off low-pass filter with four transmission zeros. Active and Passive Electronic Components. https://doi.org/10.1155/2015/806276.

    Google Scholar 

  13. Mirzaee, M., & Verdee, B. S. (2014). Compact lowpass filter with high out-of-band rejection and superwide stopband performance. Microwave and Optical Technology Letters, 56(4), 947–950.

    Article  Google Scholar 

  14. Li, Q., Zhang, Y., & Fan, Y. (2015). Compact ultra-wide stopband low pass filter using multimode resonators. Electronics Letters, 51(14), 1084–1085.

    Article  MathSciNet  Google Scholar 

  15. Liu, S., Xu, J., & Xu, Z. (2015). Compact lowpass filter with wide stopband using stepped impedance hairpin units. Electronics Letters, 51(1), 67–69.

    Article  Google Scholar 

  16. Sarkar, D., & Moyra, T. (2017). A low cost electrically tunable bandpass filter with constant absolute bandwidth. International Journal of Electronics and Communications. https://doi.org/10.1016/j.aeue.2017.05.007.

    Google Scholar 

  17. Pal, B., & Dwari, S. (2017). Microstrip dual-band bandpass filter with independently tunable passbands using varactor-tuned stub loaded resonators. International Journal of Electronics and Communications. https://doi.org/10.1016/j.aeue.2017.01.004.

    Google Scholar 

  18. Chen, X., Zhang, L., Peng, Y., Leng, Y., Lu, H., & Zheng, Z. (2015). Compact lowpass filter with wide stopband bandwidth. Microwave and Optical Technology Letters, 57(2), 367–371.

    Article  Google Scholar 

  19. Majidifar, S. (2016). High performance microstrip LPFs using dual taper loaded resonator. Optik, 127(6), 3484–3488.

    Article  Google Scholar 

  20. Raphika, P. M., Abdulla, P., & Jasmine, P. M. (2014). Compact lowpass filter with a sharp roll-off using patch resonators. Microwave and Optical Technology Letters, 56(11), 2534–2536.

    Article  Google Scholar 

  21. Karimi, Gh, Lalbakhsh, A., Dehghani, K., & Siahkamari, H. (2015). Analysis of novel approach to design of ultra-wide stopband microstrip low-pass filter using modified U-shaped resonator. ETRI Journal, 37(5), 945–950.

    Article  Google Scholar 

  22. Arbabi, N., Almalkawi, M., Devabhaktuni, V., Yagoub, M., & Madanayake, A. (2012). A compact realization of composite low-pass filter for monolithic microwave integrated circuit applications. International Journal of RF and Microwave Computer-Aided Engineering, 22(2), 147–152.

    Article  Google Scholar 

  23. Cheng, K. K. M., & Ip, W. C. (2010). A novel power divider design with enhanced spurious suppression and simple structure. IEEE Transactions on Microwave Theory and Techniques, 58(12), 3903–3908.

    Google Scholar 

  24. Roshani, S. (2017). A Wilkinson power divider with harmonics suppression and size reduction using meandered compact microstrip resonating cells. Frequenz. https://doi.org/10.1515/freq-2016-0149.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Roshani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golestanifar, A., Roshani, S. Design of an ultra-sharp composite low-pass filter using analytical method. Analog Integr Circ Sig Process 100, 249–255 (2019). https://doi.org/10.1007/s10470-018-1358-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-018-1358-3

Keywords