Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A CNTFET-C first order all pass filter

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A compact, low voltage, low power and high frequency voltage mode first order all-pass-filter (APF) topology is presented using carbon nanotube field effect transistor (CNTFET) based inverting voltage buffer. The proposed resistor-less APF topology uses only one capacitor and two N-type CNTFETs. Adding one CNTFET based voltage controlled resistor to the proposed first order APF results into an electronically controlled first order APF with a tuneable frequency range between 1.913 and 40.2 GHz. The proposed circuits are potential candidate for low voltage analog applications as it uses only two transistors between its supply rails. Moreover, both the proposed topologies do not have any passive component matching constraint. The realized filter circuit performance is verified with HSPICE simulations, using well known Deng’s CNTFET model at 16 nm technology node with supply voltage of ± 0.7 V. The simulation results substantiate the theoretical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pandey, N., Arora, P., Kapur, S., & Malhotra, S. (2011). First order voltage mode MO-CCCCTA based all pass filter. In Proceedings of the international conference on communications and signal processing. ICCSP 2011, Calicut, India (pp. 535–537).

  2. Herencsar, N., Koton, J., Vrba, K., & Minaei, S. (2011). Electronically tunable MOSFET-C voltage-mode all-pass filter based on universal voltage conveyor. In Proceedings of the 3rd international conference on communication software and networks. ICCSN 2011, Xi’an, China (pp. 442–445).

  3. Herencsar, N., Koton, J., Jerabek, J., Vrba, K., & Cicekoglu, O. (2011). Voltage-mode all-pass filters using universal voltage conveyor and MOSFET-based electronic resistors. Radioengineering, 20(1), 10–18.

    Google Scholar 

  4. Herencsar, N., Koton, J., & Vrba, K. (2009). A new electronically tunable voltage-mode active-C phase shifter using UVC and OTA. IEICE Electron. Express, 6(17), 1212–1218.

    Article  Google Scholar 

  5. Minaei, S., & Yuce, E. (2010). Novel voltage-mode all-pass filter based on using DVCCs. Circuits Syst. Signal Process., 29(3), 391–402.

    Article  MATH  Google Scholar 

  6. Horng, J.-W. (2010). DVCCs based high input impedance voltage-mode first-order allpass, highpass and lowpass filters employing grounded capacitor and resistor. Radioengineering, 19(4), 653–656.

    Google Scholar 

  7. Minaei, S., & Cicekoglu, O. (2006). A resistorless realization of the first-order all-pass filter. Int. J. Electron., 93(03), 177–183.

    Article  Google Scholar 

  8. Kumar, P., Keskin, A., & Pal, K. (2007). Wide-band resistorless all-pass sections with single element tuning. Int. J. Electron., 94(6), 597–604.

    Article  Google Scholar 

  9. Biolkova, V., Kolka, Z., & Biolek, D. (2011). Dual-output all-pass filter employing fully-differential operational amplifier and current-controlled current conveyor. In Proceedings of the 7th international conference on electrical and electronics engineering-ELECO, 2011, Bursa, Turkey (pp. 340–344).

  10. Metin, B., Pal, K., & Cicekoglu, O. (2011). All-pass filters using DDCC-and MOSFET-based electronic resistor. Int. J. Circuit Theory Appl., 39(8), 881–891.

    Google Scholar 

  11. Metin, B., & Pal, K. (2010). New all-pass filter circuit compensating for C-CDBA non-idealities. J. Circuits Syst. Comput., 19(02), 381–391.

    Article  Google Scholar 

  12. Kumngern, M., Chanwutitum, J., & Dejhan, K. (2008). Electronically tunable voltage-mode all-pass filter using simple CMOS OTAs. In Proceedings of the 2008 international symposium on communications and information technologies. ISCIT, 2008, Lao, China (pp. 1–5).

  13. Tanaphatsiri, C., Jaikla, W., & Siripruchyanun, M. (2008). An electronically controllable voltage-mode first-order all-pass filter using only single CCCDTA. In Proceedings of the 2008 international symposium on communications and information technologies. ISCIT, 2008, Lao, China (pp. 305–309).

  14. Herencsar, N., Koton, J., Vrba, K., & Metin, B. (2011). Novel voltage conveyor with electronic tuning and its application to resistorless all-pass filter. In Proceedings of the 34th international Conference on Telecommunications and Signal processing. TSP, 2011, Budapest, Hungary (pp. 265–268).

  15. Metin, B., Pal, K., & Cicekoglu, O. (2011). CMOS-controlled inverting CDBA with a new all-pass filter application. Int. J. Circuit Theory Appl., 39(4), 417–425.

    Article  Google Scholar 

  16. Metin, B., Herencsar, N., & Cicekoglu, O. (2013). A low-voltage electronically tunable MOSFET-C voltage-mode first-order all-pass filter design. Radioengineering, 22(4), 985–994.

    Google Scholar 

  17. Yuce, E., & Minaei, S. (2012). Derivation of low-power first-order low-pass, high-pass and all-pass filters. Analog Integr. Circuits Signal Process., 70(1), 151–156.

    Article  Google Scholar 

  18. Yuce, E., & Minaei, S. (2010). A novel phase shifter using two NMOS transistors and passive elements. Analog Integr. Circuits Signal Process., 62(1), 77.

    Article  Google Scholar 

  19. Maundy, B. J., & Aronhime, P. (2002). A novel CMOS first-order all-pass filter. Int. J. Electron., 89(9), 739–743.

    Article  Google Scholar 

  20. Metin, B., & Cicekoglu, O. (2008). Tunable all-pass filter with a single inverting voltage buffer. In Proceedings of the 2008 Ph.D. research in microelectronics and electronics-PRIME, 2008, Istanbul, Turkey (pp. 261–263).

  21. Yuce, E. (2010). A novel CMOS-based voltage-mode first-order phase shifter employing a grounded capacitor. Circuits Syst. Signal Process., 29(2), 235–245.

    Article  MATH  Google Scholar 

  22. Toker, A., & Özoǧuz, S. (2003). Tunable allpass filter for low voltage operation. Electron. Lett., 39(2), 175–176.

    Article  Google Scholar 

  23. Herencsar, N., Minaei, S., Koton, J., Yuce, E., & Vrba, K. (2013). New resistorless and electronically tunable realization of dual-output VM all-pass filter using VDIBA. Analog Integr. Circuit Signal Process., 74(1), 141–154.

    Article  Google Scholar 

  24. Yücel, F., & Yuce, E. (2016). A new electronically tunable first-order all-pass filter using only three NMOS transistors and a capacitor. Turk. J. Electr. Eng. Comput. Sci., 24(4), 3286–3292.

    Article  Google Scholar 

  25. Minaei, S., & Yuce, E. (2012). High input impedance NMOS-based phase shifter with minimum number of passive elements. Circuits Syst. Signal Process., 31(1), 51–60.

    Article  MathSciNet  Google Scholar 

  26. Herencsar, N., Minaei, S., Koton, J., & Vrba, K. (2015). Voltage-mode all-pass filter design using simple CMOS transconductor: Non-ideal case study. In Proceedings of the 38th international conference on telecommunications and signal processing. TSP, 2015, Prague, Czech Republic (pp. 677–681).

  27. Frank, D. J., Dennard, R. H., Nowak, E., Solomon, P. M., Taur, Y., & Wong, H.-S. P. (2001). Device scaling limits of Si MOSFETs and their application dependencies. Proceedings of the IEEE, 89(3), 259–288.

    Article  Google Scholar 

  28. Kuhn, K. J. (2012). Considerations for ultimate CMOS scaling. IEEE Transactions on Electron Devices, 59(7), 1813–1828.

    Article  Google Scholar 

  29. Schröter, M., Claus, M., Hermann, S., Tittman-Otto, J., Haferlach, M., Mothes, S., et al. (2016). CNTFET-based RF electronics—State-of-the-art and future prospects. In IEEE 16th topical meeting on silicon monolithic integrated circuits in RF systems. SiRF, 2016, Austin, USA (pp. 97–100).

  30. Voinigescu, S. P., Tomkins, A., Dacquay, E., Chevalier, P., Hasch, J., Chantre, A., et al. (2013). A study of SiGe HBT signal sources in the 220–330-GHz range. IEEE Journal of Solid-State Circuits, 48(9), 2011–2021.

    Article  Google Scholar 

  31. Hayat, K., Cheema, H., & Shamim, A. (2013). Potential of carbon nanotube field effect transistors for analogue circuits. The Journal of Engineering.. https://doi.org/10.1049/joe.2013.0067.

    Google Scholar 

  32. Imran, A., Hasan, M., Islam, A., & Abbasi, S. A. (2012). Optimized design of a 32-nm CNFET-based low-power ultrawideband CCII. IEEE Transactions on Nanotechnology, 11(6), 1100–1109.

    Article  Google Scholar 

  33. Tripathi, S., Ansari, M. S., & Joshi, A. M. (2017). Low-noise tunable band-pass filter for ISM 2.4 GHz bluetooth transceiver in ± 0.7 V 32 nm CNFET technology. In Proceedings of the 2017 international conference on data engineering and communication technology, 2017, Singapore (pp. 435–443).

  34. Nizamuddin, M., Loan, S. A., Alamoud, A. R., & Abbassi, S. A. (2015). Design, simulation and comparative analysis of CNT based cascode operational transconductance amplifiers. Nanotechnology, 26(39), 395201.

    Article  Google Scholar 

  35. Loan, S. A., Nizamuddin, M., Alamoud, A. R., & Abbasi, S. A. (2015). Design and comparative analysis of high performance carbon nanotube-based operational transconductance amplifiers. NANO, 10(03), 1550039.

    Article  Google Scholar 

  36. Sharma, J., Ansari, M. S., & Sharma, J. (2014). Current-mode electronically tunable resistor-less universal filter in ± 0.5 V 32 Nm CNFET. In Proceedings of the 2014 international conference on devices, circuits and communications. ICDCCom, 2014, Ranchi, India (pp. 1–6).

  37. Sharma, J., Ansari, M. S., & Sharma, J. (2014). Electronically tunable resistor-less universal filter in ± 0.5 V 32 nm CNFET. In Proceedings of the 2014 international symposium on electronic system design. ISED, 2014, Surathkal, India (pp. 206–207).

  38. Natori, K., Kimura, Y., & Shimizu, T. (2005). Characteristics of a carbon nanotube field-effect transistor analyzed as a ballistic nanowire field-effect transistor. Journal of Applied Physics, 97(3), 034306.

    Article  Google Scholar 

  39. Guo, J., Lundstrom, M., & Datta, S. (2002). Performance projections for ballistic carbon nanotube field-effect transistors. Applied Physics Letters, 80(17), 3192–3194.

    Article  Google Scholar 

  40. Deng, J., & Wong, H.-S. P. (2007). A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application—Part I: Model of the intrinsic channel region. IEEE Transactions on Electron Devices, 54(12), 3186–3194.

    Article  Google Scholar 

  41. Deng, J., & Wong, H.-S. P. (2007). A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application—Part II: Full device model and circuit performance benchmarking. IEEE Transactions on Electron Devices, 54(12), 3195–3205.

    Article  Google Scholar 

  42. Sun, Y., & Kursun, V. (2011). N-type carbon-nanotube MOSFET device profile optimization for very large scale integration. Transactions on Electrical and Electronic Materials, 12(2), 43–50.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad I. Masud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masud, M.I., A’ain, A.K.B., Khan, I.A. et al. A CNTFET-C first order all pass filter. Analog Integr Circ Sig Process 100, 257–268 (2019). https://doi.org/10.1007/s10470-018-1361-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-018-1361-8

Keywords