Abstract
Measures of interestingness play a crucial role in association rule mining. An important methodological problem, on which several papers appeared in the literature, is to provide a reasonable classification of the measures. In this paper, we explore Boolean factor analysis, which uses formal concepts corresponding to classes of measures as factors, for the purpose of clustering of the measures. Unlike the existing studies, our method reveals overlapping clusters of interestingness measures. We argue that the overlap between clusters is a desired feature of natural groupings of measures and that because formal concepts are used as factors in Boolean factor analysis, the resulting clusters have a clear meaning and are easy to interpret. We conduct three case studies on clustering of measures, provide interpretations of the resulting clusters and compare the results to those of the previous approaches reported in the literature.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. VLDB Conf., pp. 478–499 (1994)
Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proc. ACM SIGMOD, pp. 207–216 (1993)
Belohlavek, R., Vychodil, V.: Discovery of optimal factors in binary data via a novel method of matrix decomposition. J. Comput. Syst. Sci. 76(1), 3–20 (2010)
Blanchard, J., Guillet, F., Briand, H., Gras, R.: Assessing rule with a probabilistic measure of deviation from equilbrium. In: Proc. of 11th International Symposium on Applied Stochastic Models and Data Analysis ASMDA, pp. 191–200. Brest, France (2005)
Blanchard, J., Guillet, F., Briand, H., Gras, R.: IPEE: Indice Probabiliste d’Écart à l’Équilibre pour l’évaluation de la qualité des règles. In: Dans l’Atelier Qualité des Données et des Connaissances, pp. 26–34 (2005)
Bouker, S., Saidi, R., Ben, Yahia S., Mephu, Nguifo E.: Ranking and selecting association rules based on dominance relationship. In: IEEE ICTAI, pp. 658–665 (2012)
Brin, S., Motwani, R., Silverstein, C.: Beyond market baskets: generalizing association rules to correlations. In: Proc. of the ACM SIGMOD Conference, pp. 265–276. Tucson, Arizona (1997)
Carpineto, C., Romano, G.: Concept data analysis. Theory and Applications. J. Wiley (2004)
Delgado, M., Ruiz, D.-L., Sanchez, D.: Studying interest measures for association rules through a logical model. Int. J. Uncertain. Fuzz. Knowl Based Syst. 18(1), 87–106 (2010).
Feno, D.R.: Mesures de qualité des règles d’association: normalisation et caractérisation des bases. Ph.D. thesis, Université de La Réunion (2007)
Ganter, B., Wille, R.: Formal concept analysis. Mathematical Foundations. Springer, Berlin (1999)
Geng, L., Hamilton, H.J.: Interestingness measures for data mining: a survey. ACM Comput. Surv. 38(3), 1–31 (2006)
Geng, L., Hamilton, H.J.: Choosing the right lens: finding what is interesting in data mining. Qual. Meas. Data Min. 43, 3–24 (2007)
Guillaume, S., Grissa, D., Mephu Nguifo, E.: Categorization of interestingness measures for knowledge extraction. ArXiv e-prints 1206.6741. cs.IT (2012)
Grissa, D., Guillaume, S., Mephu Nguifo, E.: Combining clustering techniques and formal concept analysis to characterize interestingness measures. ArXiv e-prints 1008.3629. cs.IT. (2010)
Gras, R., Kuntz, P., Couturier, R., Guillet, F.: Une version entropique de l’intensité d’implication pour les corpus volumineux. In: EGC, pp. 69–80 (2001)
Hájek, P., Havránek, T.: Mechanizing Hypotheses Formation. Springer (1978)
Hájek, P., Holeňa, Rauch, J.: The GUHA method and its meaning for data mining. J. Comput. Syst. Sci. 76, 34–48 (2010)
Heravi, M.J., Zaïane, O.R.: A study on interestingness measures for associative classifiers. In: ACM SAC, pp. 1039–1046 (2010)
Hilderman, R.J., Hamilton, H.J.: Knowledge discovery and measures of interest. In: The International Series in Engineering and Computer Science, vol. 638, p. 2, 81. Kluwer (2001)
Huynh, X.-H., Guillet, F., Briand, H.: Clustering interestingness measures with positive correlation. ICEIS 2, 248–253 (2005)
Lallich, S., Teytaud, O.: Évaluation et validation de mesures d’intérêt des règles d’association. In: RNTI-E-1, numéro spécial, pp. 193–217 (2004)
Lallich, S., Teytaud, O., Prudhomme, E.: Association rule interestingness: measure and statistical validation. Qual. Meas. Data Min. 43, 251–275 (2007)
Lenca, P., Meyer, P., Vaillant, B., Picouet P.: Aide multicritére à la décision pour évaluer les indices de qualité des connaissances—modélisation des préférences de l’utilisatieur. EGC 1, 271–282 (2003)
Lenca, P., Meyer, P., Picouet, P., Vaillant, B., Lallich, S.: Critères d’évaluation des mesures de qualité en ecd. RNTI (Entreposage et Fouille de données) 1(1), 123–134 (2003)
Lenca, P., Meyer, P., Vaillant, B., Lallich, S.: A multicriteria decision aid for interestingness measure selection. Technical Report LUSSI-TR-2004-01-EN, (chap. 1). Dpt. LUSSI, ENST Bretagne (2004)
Lenca, P., Vaillant, B., Meyer, P., Lallich, S.: Association rule interestingness measures: experimental and theoretical studies. Qual. Meas. Data Min. 43, 51–76 (2007)
Maddouri, M., Gammoudi, J.: On semantic properties of interestingness measures for extracting rules from data. Lect. Notes Comput. Sci. 4431, 148–158 (2007)
Piatetsky-Shapiro, G.: Discovery, analysis and presentation of strong rules. In: Piatetsky-Shapiro, G., Frawley, W.J. (eds.) Knowledge Discovery in Databases, pp. 229–248. AAAI Press (1991)
Sese, J., Morishita, S.: Answering the most correlated n association rules efficiently. In: Proceedings of the 6th European Conf on Principles of Data Mining and Knowledge Discovery, pp. 410–422. Springer-Verlag (2002)
Surana, A., Kiran R.U., Reddy P.K.: Selecting a right interestingness measure for rare association rules. In: Proceedings of the 16th International Conference on Management of Data (COMAD 2010), pp. 115–124. Nagpur, India (2010)
Suzuki, E.: Pitfalls for categorizations of objective interestingness measures for rule discovery. In: Statistical Implicative Analysis, pp. 383–395. Springer-Verlag (2008)
Tan, P.-N., Kumar, V., Srivastava J.: Selecting the right objective measure for association analysis. Inf. Syst. 29(4), 293–313 (2004)
Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-Wesley (2005)
Vaillant, B.: Mesurer la qualité des règles d’association: études formelles et expérimentales. Ph.D. thesis, ENST Bretagne (2006)
Vaillant, B., Lenca, P., Lallich, S.: A clustering of interestingness measures. In: DS’04, The 7th International Conference on Discovery Science LNAI, vol. 3245, pp. 290–297 (2004)
Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordrecht, Boston (1982)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Belohlavek, R., Grissa, D., Guillaume, S. et al. Boolean factors as a means of clustering of interestingness measures of association rules. Ann Math Artif Intell 70, 151–184 (2014). https://doi.org/10.1007/s10472-013-9370-x
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10472-013-9370-x
Keywords
- Boolean factor analysis
- Association rules measures
- Interestingness measures
- Formal concept analysis
- Clustering