Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Minimal bases of temporal attribute implications

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

We deal with dependencies in object-attribute data which is recorded at separate points in time. The data is formalized by finitely many tables encoding the relationship between objects and attributes and each table can be seen as single formal context observed at separate point in time. Given such data, we are interested in concise ways of characterizing all if-then dependencies between attributes that hold in the data and are preserved in all time points. In order to formalize the dependencies, we use particular if-then rules called attribute implications annotated by time points which can be seen as particular formulas of linear temporal logic. We introduce non-redundant bases of dependencies from data as non-redundant sets entailing exactly all dependencies that hold in the data. In addition, we investigate minimality of bases as stronger form of non-redundancy. For given data, we present description of minimal bases using the notion of pseudo-intents generalized in the temporal setting. The present paper is a continuation of our previous paper on entailment of attribute implications annotated by time points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, SIGMOD’93, pp. 207–216, New York (1993)

  2. Ale, J.M., Rossi, G.H.: An approach to discovering temporal association rules. In: Proceedings of the 2000 ACM Symposium on Applied Computing, SAC’00, vol. 1, pp. 294–300. ACM, New York (2000)

  3. Armstrong, W.W.: Dependency structures of data base relationships. In: Rosenfeld, J.L., Freeman, H. (eds.) Information Processing 74: Proceedings of IFIP Congress, pp. 580–583, Amsterdam (1974)

  4. Beeri, C., Bernstein, P.A.: Computational problems related to the design of normal form relational schemas. ACM Trans. Database Syst. 4, 30–59 (1979)

    Article  Google Scholar 

  5. Biedermann, K.: A foundation of the theory of trilattices. Dissertation, TU Darmstadt, Aachen (1998)

    MATH  Google Scholar 

  6. Birkhoff, G.: Lattice theory. American Mathematical Society, Providence (1940)

    Book  MATH  Google Scholar 

  7. Chomicki, J., Imieliński, T.: Temporal deductive databases and infinite objects. In: Proceedings of the 7th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, PODS ’88, pp. 61–73. ACM, New York (1988)

  8. Chomicki, J.: Relational specifications of infinite query answers. In: Proceedings of the 1989 ACM SIGMOD International Conference on Management of Data, SIGMOD ’89, pp. 174–183. ACM, New York (1989)

  9. Chomicki, J.: Finite representation of infinite query answers. ACM Trans. Database Syst. 18(2), 181–223 (1993)

    Article  Google Scholar 

  10. Davey, B.A., Priestley, H.A.: Introduction to lattices and order. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  11. Delobel, C., Casey, R.G.: Decomposition of a data base and the theory of boolean switching functions. IBM J. Res. Dev. 17(5), 374–386 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  12. Distel, F., Sertkaya, B.: On the complexity of enumerating pseudo-intents. Discret. Appl. Math. 159(6), 450–466 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fagin, R.: Functional dependencies in a relational database and propositional logic. IBM J. Res. Dev. 21(6), 534–544 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feng, L., Dillon, T., Liu, J.: Inter-transactional association rules for multi-dimensional contexts for prediction and their application to studying meterological data. Data Knowl. Eng. 37(1), 85–115 (2001)

    Article  MATH  Google Scholar 

  15. Feng, L., Yu, J.X., Lu, H., Han, J.: A template model for multidimensional inter-transactional association rules. VLDB J. 11(2), 153–175 (2002)

    Article  Google Scholar 

  16. Ganter, B.: Two basic algorithms in concept analysis. In: Proceedings of the 8th International Conference on Formal Concept Analysis, ICFCA’10, pp. 312–340. Springer, Berlin (2010)

  17. Ganter, B., Obiedkov, S.: Implications in triadic formal contexts, Conceptual Structures at Work. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) Lecture Notes in Computer Science, vol. 3127, pp. 186–195. Springer, Berlin Heidelberg (2004)

  18. Ganter, B., Wille, R.: Formal concept analysis: Mathematical foundations, 1st edn. Springer New York, Inc., Secaucus (1997)

    MATH  Google Scholar 

  19. Guigues, J.-L., Duquenne, V.: Familles minimales d’implications informatives resultant d’un tableau de données binaires. Math. Sci. Hum. 95, 5–18 (1986)

    Google Scholar 

  20. Lee, A.J.T., Wang, C.-S., Weng, W.-Y., Chen, Y.-A., Wu, H.-W.: An efficient algorithm for mining closed inter-transaction itemsets. Data Knowl. Eng. 66(1), 68–91 (2008)

    Article  Google Scholar 

  21. Lehmann, F., Wille, R.: A triadic approach to formal concept analysis, Conceptual Structures: Applications, Implementation and Theory. In: Ellis, G., Levinson, R., Rich, W., Sowa, J.F. (eds.) Lecture Notes in Computer Science, vol. 954, pp. 32–43. Springer, Berlin Heidelberg (1995)

  22. Li, Y., Ning, P., Wang, X.S., Jajodia, S.: Discovering calendar-based temporal association rules. Data Knowl. Eng. 44(2), 193–218 (2003)

    Article  Google Scholar 

  23. Lloyd, J.W.: Foundations of logic programming. Springer New York, Inc., New York (1984)

    Book  MATH  Google Scholar 

  24. Lu, H., Feng, L., Han, J.: Beyond intratransaction association analysis: Mining multidimensional intertransaction association rules. ACM Trans. Inf. Syst. 18(4), 423–454 (2000)

    Article  Google Scholar 

  25. Maier, D.: Minimum covers in relational database model. J. ACM 27(4), 664–674 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  26. Maier, D.: Theory of Relational Databases. Computer Science Pr, Rockville (1983)

    MATH  Google Scholar 

  27. Mendelson, E.: Introduction to Mathematical Logic. Chapman and Hall, NJ (1987)

    Book  MATH  Google Scholar 

  28. Rainsford, C.P., Roddick, J.F., Rauch, J.: Adding temporal semantics to association rules, Principles of Data Mining and Knowledge Discovery. In: Żytkow, J.M. (ed.) Lecture Notes in Computer Science, vol. 1704, pp. 504–509. Springer, Berlin Heidelberg (1999)

  29. Reynolds, M.: The complexity of decision problems for linear temporal logics. J. Stud. Log. 3(1), 19–50 (2010)

    Google Scholar 

  30. Sagiv, Y., Delobel, C., Parker, Jr., D.S., Fagin, R.: An equivalence between relational database dependencies and a fragment of propositional logic. J. ACM 28(3), 435–453 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  31. Triska, J., Vychodil, V.: Logic of temporal attribute implications, Annals of Mathematics and Artificial Intelligence, in press, https://doi.org/10.1007/s10472--016--9526--6

  32. Triska, J.: Towards Armstrong-style inference system for attribute implications with temporal semantics. In: Torra, V., Narukawa, Y., Endo, Y. (eds.) Modeling Decisions for Artificial Intelligence, LNCS, vol. 8825, pp. 84–95. Springer International Publishing (2014)

  33. Tung, A.K.H., Lu, H., Han, J., Feng, L.: Breaking the barrier of transactions: mining inter-transaction association rules. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’99, pp. 297–301. ACM, New York (1999)

  34. Wechler, W.: Universal Algebra for Computer Scientists EATCS Monographs on Theoretical Computer Science, vol. 25. Springer, Berlin Heidelberg (1992)

    Book  Google Scholar 

  35. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts, Ordered Sets. In: Rival, I. (ed.) NATO Advanced Study Institutes Series. (English), vol. 83, pp. 445–470. Springer, Netherlands (1982)

  36. Zaki, M.J.: Mining non-redundant association rules. Data Min Knowl Discov 9, 223–248 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

Supported by grant no. P202/14-11585S of the Czech Science Foundation. J. Triska acknowledges support by the IGA of Palacky University Olomouc, No. IGA_PrF_2018_030.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Triska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Triska, J., Vychodil, V. Minimal bases of temporal attribute implications. Ann Math Artif Intell 83, 73–97 (2018). https://doi.org/10.1007/s10472-018-9576-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-018-9576-z

Keywords

Mathematics Subject Classification (2010)