Abstract
This work introduces a new analytical approach to the formulation of optimization problems with piecewise-defined (PD) objective functions. First, we introduce a new definition of multivariate PD functions and derive formal results for their continuity and differentiability. Then, we obtain closed-form expressions for the calculation of their moments. We apply these findings to three classes of optimization problems involving coherent risk measures. The method enables one to obtain insights on problem structure and on sensitivity to imprecision at the problem formulation stage, eliminating reliance on ad-hoc post-optimality numerical calculations.
Similar content being viewed by others
References
Antunes, C. H., & Dias, L. C. (2007). Managing uncertainty in decision support models editorial. European Journal of Operational Research, 181(3), 1425–1426.
Ahmed, S., Cakmak, U., & Shapiro, A. (2007). Coherent risk measures in inventory problems. European Journal of Operational Research, 182(1), 226–238.
Artzner, P., Delbaen, F., Eber, J. M., & Heath, D. (1999). Coherent measures of risk. Mathematical Finance, 9, 203–228.
Arcelus, F. J., Pakkala, T. P. M., & Srinivasan, G. (2006). On the interaction between retailers inventory policies and manufacturer trade deals in response to supply-uncertainty occurrences. Annals of Operations Research, 143(1), 45–58.
Beale, E. (1955). On minimizing a convex function subject to linear inequalities. Journal of the Royal Statistical Society B, 17, 173–184.
Benati, S. (2004). The computation of the worst conditional expectation. European Journal of Operational Research, 155, 414–425.
Bertsimas, D., & Shioda, R. (2003). Restaurant revenue management. Operations Research, 51(3), 472–486.
Borgonovo, E., & Peccati, L. (2008). Financial management in inventory problems: risk averse vs. risk neutral policies. International Journal of Production Economics. doi:10.1016/j.ijpe.2008.08.040.
Carette, J. (2007). A canonical form for some piecewise defined functions. In Proceedings of ISSAC 2007.
Chaton, C., & Doucet, J. (2003). Uncertainty and investment in electricity generation with an application to the case of Hydro-Québec. Annals of Operations Research, 120, 59–80.
Cooper, W. L., & Gupta, D. (2006). Stochastic comparisons in airline revenue management. Manufacturing & Service Operations Management, 8(3), 221–234.
Dantzig, G. B. (1955). Linear programming under uncertainty. Management Science, 1, 197–206.
Dantzig, G. B. (1999). Planning under uncertainty. Annals of Operations Research, 85, 1–5.
Dupačova, J. (2002). Applications of stochastic programming: achievements and questions. European Journal of Operational Research, 140, 281–290.
Ekholm, T., Brian White, B., & Wienholtz, D. (2002). Embeddedness of minimal surfaces with total boundary curvature at most 4π. Annals of Mathematics, 155, 209–234.
Gotoh, J., & Takano, Y. (2007). Newsvendor solutions via conditional value-at-risk minimization. European Journal of Operational Research, 179(1), 80–96.
Herrera, I. (2007). Theory of differential equations in discontinuous piecewise-defined functions. Numerical Methods for Partial Differential Equations, 23, 597–639.
Howell, K. (2008). Piecewise-defined functions and the Laplace transform. Lecture notes for the course in applied differential equations (Chap. 28). http://www.uah.edu/howell/DE/Alt_Text/Part4/PW_Def_Fcts.pdf.
Hutchings, M., Morgan, F., Ritorè, M., & Ros, A. (2002). Proof of the double bubble conjecture. Annals of Mathematics, 155, 459–489.
Jeffrey, D. J., Labahn, G., von Mohrenschildt, M., & Rich, A. D. 1997. Integration of the signum, piecewise and related functions. In Proceedings of ISSAC97.
Jeffrey, D. J., & Rich, A. D. 1998. Recursive integration of piecewise-continuous functions. In Proceedings of ISSAC98.
Muller, S., & Sverak, V. (2003). Convex integration for Lipschitz mappings and counterexamples to regularity. Annals of Mathematics, 157, 715–742.
Nozick, L., Turnquist, M. A., & Ningxiong, X. (2004). Managing portfolios of projects under uncertainty. Annals of Operations Research, 132, 243–256.
Rockafellar, R. T., & Uryasev, S. (2002). Conditional value-at-risk for general loss distributions. Journal of Banking and Finance, 26, 1443–1471.
Rockafellar, R. T., Uryasev, S., & Zabarankin, M. (2003). Deviation measures in risk analysis and optimization (Research Report # 2002-7). Risk Management and Financial Engineering Lab, University of Florida, Gainesville, FL.
Rockafellar, R. T., Uryasev, S., & Zabarankin, M. (2003). Master funds in portfolio analysis with general deviation measures. Journal of Banking and Finance, 30, 743–778.
Ruszczynski, A., & Shapiro, A. (2005). Optimization of risk measures. In G. Calafiore & F. Dabene (Eds.), Probabilistic and randomized methods for design under uncertainty. Berlin: Springer.
Schaefer, L. A., & Schaefer, A. J. (2004). Locating hybrid fuel cell–turbine power generation. Annals of Operations Research, 132, 301–322.
Shah, S., & Madhavan, K. P. (2004). Design of controllable batch processes in the presence of uncertainty. Annals of Operations Research, 132, 223–241.
Siegmann, A., & Lucas, A. (2005). Discrete-time financial planning models under loss-averse preferences. Operations Research, 53(3), 403–414.
Spivak, M. (2005). A comprehensive introduction to differential geometry (3rd ed.). Huston: Publish or Perish INC.
Tomazi, K. G. (2004). Optimization of batch reactions in series with uncertainty. Annals of Operations Research, 132, 189–206.
Withehead, J. H. C. (1961). Manifolds with transverse fields in Euclidean space. Annals of Mathematics, 73(1), 154–212.
Author information
Authors and Affiliations
Corresponding author
Additional information
The authors wish to thank the anonymous referees for the very insightful comments, that have greatly contributed in the final realization of the present paper. A special thank to Jacques Carette for the very perceptive and useful suggestions on an earlier version of the present paper. Financial support from the ELEUSI Research Center of Bocconi University is gratefully acknowledged.
Rights and permissions
About this article
Cite this article
Borgonovo, E., Peccati, L. Moment calculations for piecewise-defined functions: an application to stochastic optimization with coherent risk measures. Ann Oper Res 176, 235–258 (2010). https://doi.org/10.1007/s10479-008-0504-1
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10479-008-0504-1