Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The chain graph sandwich problem

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The chain graph sandwich problem asks: Given a vertex set V, a mandatory edge set E 1, and a larger edge set E 2, is there a graph G=(V,E) such that E 1EE 2 with G being a chain graph (i.e., a 2K 2-free bipartite graph)? We prove that the chain graph sandwich problem is NP-complete. This result stands in contrast to (1) the case where E 1 is a connected graph, which has a linear-time solution, (2) the threshold graph sandwich problem, which has a linear-time solution, and (3) the chain probe graph problem, which has a polynomial-time solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chvátal, V., & Hammer, P. (1977). Aggregation of inequalities integer programming. Annals of Discrete Mathematics, 1, 145–162.

    Article  Google Scholar 

  • Dantas, S., Klein, S., Mello, C. P., & Morgana, A. (2009). The graph sandwich problem for P 4-sparse graphs. Discrete Mathematics, 309, 3664–3673.

    Article  Google Scholar 

  • Dourado, M., Petito, P., Teixeira, R. B., & Figueiredo, C.M.H. (2008). Helly property, clique graphs, complementary graph classes, and sandwich problems. Journal Brazilian Computer Society, 14, 45–52.

    Article  Google Scholar 

  • Figueiredo, C. M. H., Faria, L., Klein, S., & Sritharan, R. (2007). On the complexity of the sandwich problems for strongly chordal graphs and chordal bipartite graphs. Theoretical Computer Science, 381, 57–67.

    Article  Google Scholar 

  • Golumbic, M. C. (2009). Landmarks algorithmic graph theory: a personal retrospective. Lecture Notes in Comput. Sci. (Vol. 5420, pp. 1–14). Berlin: Springer.

    Google Scholar 

  • Golumbic, M. C., Kaplan, H., & Shamir, R. (1995). Graph sandwich problems. Journal of Algorithms, 19, 449–473.

    Article  Google Scholar 

  • Golumbic, M. C., Maffray, F., & Morel, G. (2009). A characterization of chain probe graphs. Annals of Operation Research. doi:10.1007/s10479-009-0584-6.

    Google Scholar 

  • Hammer, P. L., Peled, U. N., & Sun, X. (1990). Difference graphs. Discrete Applied Mathematics, 28, 35–44.

    Article  Google Scholar 

  • Kratochvíl, J., & Tuza, Zs. (2002). On the complexity of bicoloring clique hypergraphs of graphs. Journal of Algorithms, 45, 40–54.

    Article  Google Scholar 

  • Mahadev, N. V. R., & Peled, U. N. (1995). Threshold graphs and related topics. Annals of Discrete Mathematics (Vol. 56). Amsterdam: Elsevier.

    Google Scholar 

  • Sritharan, R. (2008). Chordal bipartite completion of colored graphs. Discrete Mathematics, 308, 2581–2588.

    Article  Google Scholar 

  • Teixeira, R. B., Dantas, S., & Figueiredo, C. M. H. (2009). The polynomial dichotomy for three nonempty part sandwich problems. Discrete Applied Mathematics. doi:10.1016/j.dam.2009.12.002.

    Google Scholar 

  • Van Bang, Le (2010). Two characterizations of chain partitioned probe graphs. Annals of Operation Research. doi:10.1007/s10479-010-0749-3

    Google Scholar 

  • Yannakakis, M. (1981). Node-deletion problems on bipartite graphs. SIAM Journal on Computing, 10, 310–327.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Charles Golumbic.

Additional information

This research was partially supported by CNPq, CAPES (Brazil)/COFECUB (France), FAPERJ.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dantas, S., de Figueiredo, C.M.H., Golumbic, M.C. et al. The chain graph sandwich problem. Ann Oper Res 188, 133–139 (2011). https://doi.org/10.1007/s10479-010-0792-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-010-0792-0

Keywords