Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Reliability of manufacturing equipment in complex environments

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We present two stochastic failure models for the reliability evaluation of manufacturing equipment that degrades due to its complex operating environment. The first model examines the case when the environment is a temporally nonhomogeneous continuous-time Markov chain, and the second assumes the environment is a temporally homogeneous semi-Markov process on a finite space. Derived are transform expressions for the lifetime distributions. A few examples are provided to illustrate the main results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abate, J., & Whitt, W. (1995). Numerical inversion of Laplace transforms of probability distributions. ORSA Journal on Computing, 7, 36–43.

    Article  Google Scholar 

  • Abate, J., Choudhury, G., & Whitt, W. (1998). Numerical inversion of multidimensional Laplace transforms by the Laguerre method. Performance Evaluation, 31, 229–243.

    Article  Google Scholar 

  • Blanes, S., Casas, F., Oteo, J. A., & Ros, J. (2009). The Magnus expansion and some of its applications. Physics Reports, 470(5–6), 151–238.

    Article  Google Scholar 

  • Çinlar, E. (1977). Shock and wear models and Markov-additive processes. In I. N. Shimi & C. P. Tsokos (Eds.), The theory and applications of reliability (pp. 193–214). San Diego: Academic Press.

    Google Scholar 

  • Ebrahimi, N. (2006). System reliability based on system wear. Stochastic Models, 22, 21–36.

    Article  Google Scholar 

  • Esary, J. D., Marshall, A. W., & Proschan, F. (1973). Shock models and wear processes. The Annals of Probability, 1(4), 627–649.

    Article  Google Scholar 

  • Glynn, P., & Whitt, W. (1993). Limit theorems for cumulative processes. Stochastic Processes and Their Applications, 47, 299–314.

    Article  Google Scholar 

  • Glynn, P., & Whitt, W. (2002). Necessary conditions in limit theorems for cumulative processes. Stochastic Processes and Their Applications, 98, 199–209.

    Article  Google Scholar 

  • Glynn, P., & Hass, P. J. (2004). On functional central limit theorems for semi-Markov and related processes. Communications in Statistical Theory and Methods, 33(3), 487–506.

    Article  Google Scholar 

  • Hirvikorpi, M., Knuutila, T., Leipala, T., & Nevalainen, O. S. (2007). Job scheduling and management of wearing tools with stochastic tool lifetimes. International Journal of Manufacturing Systems, 19, 443–462.

    Article  Google Scholar 

  • Hsu, B.-M., & Shu, M.-H. (2010). Reliability assessment and replacement for machine tools under wear deterioration. International Journal of Advanced Manufacturing Technology, 48, 355–365.

    Article  Google Scholar 

  • Jeang, A. (1999). Tool replacement policy for probabilistic tool life and random wear process. Quality and Reliability Engineering International, 15, 205–212.

    Article  Google Scholar 

  • Kharoufeh, J. P. (2003). Explicit results for wear processes in a Markovian environment. Operations Research Letters, 31(3), 237–244.

    Article  Google Scholar 

  • Kharoufeh, J. P., & Cox, S. M. (2005). Stochastic models for degradation-based reliability. IIE Transactions, 37(6), 533–542.

    Article  Google Scholar 

  • Kharoufeh, J. P., Finkelstein, D., & Mixon, D. (2006). Availability of periodically inspected systems subject to Markovian wear and shocks. Journal of Applied Probability, 43(2), 303–317.

    Article  Google Scholar 

  • Kharoufeh, J. P., Solo, C., & Ulukus, M. Y. (2010). Semi-Markov models for degradation-based reliability. IIE Transactions, 42(8), 599–612.

    Article  Google Scholar 

  • Khorshidian, K. (2008). Strong law of large numbers for nonlinear semi-Markov reward processes. Asian Journal of Mathematical Statistics, 1, 57–62.

    Article  Google Scholar 

  • Khorshidian, K. (2009). Central limit theorem for nonlinear semi-Markov reward processes. Stochastic Analysis and Applications, 27, 656–670.

    Article  Google Scholar 

  • Kiessler, P., Klutke, G., & Yang, Y. (2002). Availability of periodically inspected systems subject to Markovian degradation. Journal of Applied Probability, 39, 700–711.

    Article  Google Scholar 

  • Kulkarni, V. G. (1995). Modeling and analysis of stochastic systems (1st edn.). London: Chapman & Hall.

    Google Scholar 

  • Kulkarni, V., Nicola, V., & Trivedi, K. (1986). On modeling the performance and reliability of multi-mode computer systems. Journal of Systems and Software, 6, 175–182.

    Article  Google Scholar 

  • Kulkarni, V. G., Nicola, V. F., & Trivedi, K. (1987). The completion time of a job on a multi-mode system. Advances in Applied Probability, 19, 932–954.

    Article  Google Scholar 

  • Li, G., & Luo, J. (2005). Shock model in Markovian environment. Naval Research Logistics, 52, 253–260.

    Article  Google Scholar 

  • Liberopoulos, G., & Caramanis, M. (1994). Production control of manufacturing systems with production-rate dependent failure rates. IEEE Transactions on Automatic Control, 39(4), 889–895.

    Article  Google Scholar 

  • Magnus, W. (1954). On the exponential solution of differential equations for a linear operator. Communications in Pure and Applied Mathematics, VII, 649–673.

    Article  Google Scholar 

  • Makis, V. (1999). Optimal control policy for a tool-wear process subject to shocks and random failures. International Journal of Production Economics, 60–61, 613–621.

    Article  Google Scholar 

  • Martinelli, F., & Piedimonte, F. (2004). Control of manufacturing systems with non-homogeneous Markov failure processes. In Proceedings of the 43rd IEEE conference on decision and control, December 14–17, 2004, Atlantis, Paradise Island, Bahamas (pp. 4399–4404).

    Google Scholar 

  • Martinelli, F. (2007). Optimality of a two- threshold feedback control for a manufacturing system with a production dependent failure rate. IEEE Transactions on Automatic Control, 52(10), 1937–1942.

    Article  Google Scholar 

  • Martinelli, F., & Piedimonte, F. (2008). Optimal cycle production of a manufacturing system subject to deterioration. Automatica, 44(9), 2388–2391.

    Article  Google Scholar 

  • Mazzuchi, T. A., & Soyer, R. (1989). Assessment of machine tool reliability using a proportional hazards model. Naval Research Logistics, 36, 765–777.

    Article  Google Scholar 

  • Moan, P. C. (2002). On backward error analysis and Nekhoroshev stability in the numerical analysis of conservative systems of ODEs. Ph.D. thesis, University of Cambridge.

  • Moorthy, M. V. (1995). Numerical inversion of two-dimensional Laplace transforms-Fourier series representation. Applications in Numerical Mathematics, 17, 119–127.

    Article  Google Scholar 

  • Oberhettinger, F., & Badii, L. (1973). Tables of Laplace transforms. New York: Springer.

    Book  Google Scholar 

  • Pérez-Ocón, R., Ruiz-Castro, J. E., & L Gámiz-Pérez, M. (2001). Non-homogeneous Markov models in the analysis of survival after breast cancer. Journal of the Royal Statistical Society, Series C (Applied Statistics), 50(1), 111–124.

    Article  Google Scholar 

  • Platis, A., Limnios, N., & Le Du, M. (1996). Performability of electric-power systems modeled by non-homogeneous Markov chains. IEEE Transactions on Reliability, 45(4), 605–610.

    Article  Google Scholar 

  • Platis, A., Limnios, N., & Le Du, M. (1998). Hitting time in a finite, non-homogeneous Markov chain with applications. Applied Stochastic Models and Data Analysis, 14, 241–253.

    Article  Google Scholar 

  • Platis, A., Gravvanis, G. A., Giannoutakis, K. M., & Lipitakis, E. A. (2003). A two-phase cyclic nonhomogeneous Markov chain performability evaluation by explicit approximate inverses applied to a replicated database system. Journal of Mathematical Modelling and Algorithms, 2, 235–249.

    Article  Google Scholar 

  • Platis, A. (2006). A generalized formulation for the performability indicator. Computers and Mathematics with Applications, 51, 239–246.

    Article  Google Scholar 

  • Singpurwalla, N. (1995). Survival in dynamic environments. Statistical Science, 10, 86–103.

    Article  Google Scholar 

  • Smotherman, M., & Zemoudeh, K. (1989). A non-homogeneous Markov model for phased-mission reliability analysis. IEEE Transactions on Reliability, 38(5), 585–590.

    Article  Google Scholar 

  • Whitt, W. (1984). On approximations for queues, III: mixtures of exponential distributions. AT & T Bell Laboratories Technical Journal, 63(1), 163–175.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey P. Kharoufeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kharoufeh, J.P., Cox, S.M. & Oxley, M.E. Reliability of manufacturing equipment in complex environments. Ann Oper Res 209, 231–254 (2013). https://doi.org/10.1007/s10479-011-0839-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-011-0839-x

Keywords