References
Abramovich, S., Barić, J., & Pečarić, J. (2009). A new proof of an inequality of Bohr for Hilbert space operators. Linear Algebra and Its Applications, 430, 1432–1435.
Archbold, J. W. (1958). Algebra. London: Pitman.
Ben-Tal, A., Ben-Israel, A., & Teboulle, M. (1991). Certainty equivalents and information measures: duality and extremal principles. Journal of Applied Mathematics and Stochastic Analysis, 157, 211–236. doi:10.1016/0022-247X(91)90145-P.
Bohr, H. (1924). Zur Theorie der fastperiodischen Funktionen, I. Acta Mathematica, 45, 29–127.
Cheung, W.-S., & Pečarić, J. (2006). Bohr’s inequalities for Hilbert space operators. Journal of Applied Mathematics and Stochastic Analysis, 323, 403–412.
Mǎrghidanu, D., Díaz-Barrero, J., & Rǎdulescu, S. (2009). New refinements of some classical inequalities. Mathematical Inequalities & Applications, 12, 513–518.
Mitrinović, D. S., Pečarić, J. E., & Fink, A. M. (1993). Mathematics and its Applications (East European Series): Vol. 61. Classical and New Inequalities in Analysis. Dordrecht: Kluwer Academic.
Radon, J. (1913). Theorie und Anwendungen der absolut additiven Mengenfunktionen. Sitzungsberichte der Mathematish-Naturwissenschaftlichen Klasse der Kaiserlichen Akademie der Wissenschaften, 122, 1295–1438, reprinted in his Gesammelte Abhandlungen 1, pp. 45–188. Birkhäuser, Basel, 1987.
Shannon, C. E., & Weaver, W. (1949). The Mathematical Theory of Communication. Urbana: The University of Illinois Press.
Author information
Authors and Affiliations
Corresponding author
Additional information
Dedicated to the memory of a good friend, Cy Derman.
Rights and permissions
About this article
Cite this article
Olkin, I., Shepp, L. An inequality that subsumes the inequalities of Radon, Bohr, and Shannon. Ann Oper Res 208, 31–36 (2013). https://doi.org/10.1007/s10479-011-1054-5
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10479-011-1054-5