Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An inequality that subsumes the inequalities of Radon, Bohr, and Shannon

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Abramovich, S., Barić, J., & Pečarić, J. (2009). A new proof of an inequality of Bohr for Hilbert space operators. Linear Algebra and Its Applications, 430, 1432–1435.

    Article  Google Scholar 

  • Archbold, J. W. (1958). Algebra. London: Pitman.

    Google Scholar 

  • Ben-Tal, A., Ben-Israel, A., & Teboulle, M. (1991). Certainty equivalents and information measures: duality and extremal principles. Journal of Applied Mathematics and Stochastic Analysis, 157, 211–236. doi:10.1016/0022-247X(91)90145-P.

    Article  Google Scholar 

  • Bohr, H. (1924). Zur Theorie der fastperiodischen Funktionen, I. Acta Mathematica, 45, 29–127.

    Article  Google Scholar 

  • Cheung, W.-S., & Pečarić, J. (2006). Bohr’s inequalities for Hilbert space operators. Journal of Applied Mathematics and Stochastic Analysis, 323, 403–412.

    Article  Google Scholar 

  • Mǎrghidanu, D., Díaz-Barrero, J., & Rǎdulescu, S. (2009). New refinements of some classical inequalities. Mathematical Inequalities & Applications, 12, 513–518.

    Article  Google Scholar 

  • Mitrinović, D. S., Pečarić, J. E., & Fink, A. M. (1993). Mathematics and its Applications (East European Series): Vol. 61. Classical and New Inequalities in Analysis. Dordrecht: Kluwer Academic.

    Book  Google Scholar 

  • Radon, J. (1913). Theorie und Anwendungen der absolut additiven Mengenfunktionen. Sitzungsberichte der Mathematish-Naturwissenschaftlichen Klasse der Kaiserlichen Akademie der Wissenschaften, 122, 1295–1438, reprinted in his Gesammelte Abhandlungen 1, pp. 45–188. Birkhäuser, Basel, 1987.

    Google Scholar 

  • Shannon, C. E., & Weaver, W. (1949). The Mathematical Theory of Communication. Urbana: The University of Illinois Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingram Olkin.

Additional information

Dedicated to the memory of a good friend, Cy Derman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olkin, I., Shepp, L. An inequality that subsumes the inequalities of Radon, Bohr, and Shannon. Ann Oper Res 208, 31–36 (2013). https://doi.org/10.1007/s10479-011-1054-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-011-1054-5

Keywords