Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Balancing of simple assembly lines under variations of task processing times

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

One of the simple assembly line balancing problems (SALBPs), known as SALBP-E, is considered. It consists in assigning a given set V={1,2,…,n} of elementary tasks to linearly ordered workstations with respect to precedence and capacity restrictions while minimizing the following product: number of used workstations × working time on the most loaded one. The stability of feasible and optimal solutions for this problem with regard to possible variations of the processing time of certain tasks is investigated. Two heuristic procedures finding a compromise between the efficiency and the considered stability measure of studied solutions are suggested and evaluated on known benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ağpak, K., & Gökçen, H. (2007). A chance-constrained approach to stochastic line balancing problem. European Journal of Operational Research, 180(3), 1098–1115.

    Article  Google Scholar 

  • Baykasoğlu, A., & Özbakır, L. (2007). Stochastic U-line balancing using genetic algorithms. The International Journal of Advanced Manufacturing Technology, 32(1–2), 139–147.

    Article  Google Scholar 

  • Belgacem, T., & Hifi, M. (2008). Sensitivity analysis of the knapsack sharing problem: perturbation of the weight of an item. Computers & Industrial Engineering, 35(1), 295–308.

    Google Scholar 

  • Billaut, J. C., Moukrim, A., & Sanlaville, E. (Eds.) (2008). Flexibility and robustness in scheduling. New York: Wiley.

    Google Scholar 

  • Chiang, W. C., & Urban, T. (2006). The stochastic U-line balancing problem: a heuristic procedure. European Journal of Operational Research, 175(3), 1767–1781.

    Article  Google Scholar 

  • Ehrgott, M. (2005). Multicriteria optimization (2nd ed.). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Emelichev, V., Girlich, E., Nikulin, Y., & Podkopaev, D. (2002). Stability and regularization of vector problems of integer linear programming. Optimization, 51(4), 645–676.

    Article  Google Scholar 

  • Emelichev, V., & Podkopaev, D. (2010). Quantitative stability analysis for vector problems of 0–1 programming. Discrete Optimization, 7(1–2), 48–63.

    Article  Google Scholar 

  • Erel, E., Sabuncuoglu, I., & Sekerci, H. (2005). Stochastic assembly line balancing using beam search. International Journal of Production Research, 43(7), 1411–1426.

    Article  Google Scholar 

  • Gamberini, R., Gebennini, E., Grassi, A., & Regattieri, A. (2009). A multiple single-pass heuristic algorithm solving the stochastic assembly line rebalancing problem. International Journal of Production Research, 47(8), 2141–2164.

    Article  Google Scholar 

  • Gen, M., Tsujimura, Y., & Li, Y. (1996). Fuzzy assembly line balancing using genetic algorithms. Computers & Industrial Engineering, 31(3–4), 631–634.

    Article  Google Scholar 

  • Guinand, F., Moukrim, A., & Sanlaville, E. (2004). Sensitivity analysis of tree scheduling on two machines with communication delays. Parallel Computing, 30(1), 103–120.

    Article  Google Scholar 

  • Hall, N., & Posner, M. (2004). Sensitivity analysis for scheduling problems. Journal of Scheduling, 7(1), 49–83.

    Article  Google Scholar 

  • Hop, N. (2006). A heuristic solution for fuzzy mixed-model line balancing problem. European Journal of Operational Research, 168(3), 798–810.

    Article  Google Scholar 

  • Kılınç-Karzan, F., Toriello, A., Ahmed, S., Nemhauser, G., & Savelsberg, M. (2009). Approximating the stability region for binary mixed-integer programs. Operations Research Letters, 37(4), 250–254.

    Article  Google Scholar 

  • Libura, M. (1999). On accuracy of solutions for discrete optimization problems with perturbed coefficients of the objective function. Annals of Operations Research, 86(0), 53–62.

    Article  Google Scholar 

  • Libura, M., & Nikulin, Y. (2006). Stability and accuracy functions in multicriteria linear combinatorial optimization problems. Annals of Operations Research, 147(1), 255–267.

    Article  Google Scholar 

  • Libura, M., van der Poort, E., Sierksma, G., & van der Veen, J. (1998). Stability aspects of the traveling salesman problem based on k-best solutions. Discrete Applied Mathematics, 87(1–3), 159–185.

    Article  Google Scholar 

  • Liu, S., Ong, H., & Huang, H. (2005). A bidirectional heuristic for stochastic assembly line balancing type II problem. The International Journal of Advanced Manufacturing Technology, 25(1–2), 71–77.

    Article  Google Scholar 

  • Petrovic, S., Fayad, C., & Petrovic, D. (2008). Sensitivity analysis of a fuzzy multiobjective scheduling problem. International Journal of Production Research, 46(12), 3327–3344.

    Article  Google Scholar 

  • Pettie, S. (2005). Sensitivity analysis of minimum spanning trees in sub-inverse-Ackermann time. In Lecture notes in computer science: Vol. 3827. Algorithms and computation (pp. 964–973). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Rekiek, B., Dolgui, A., Delchambre, A., & Bratcu, A. (2002). State of art of optimization methods for assembly line design. Annual Reviews in Control, 26(2), 163–174.

    Article  Google Scholar 

  • Rosenblatt, M., & Carlson, R. (1985). Designing a production line to maximize profit. IIE Transactions, 17(2), 117–122.

    Article  Google Scholar 

  • Scholl, A. (1999). Balancing and sequencing of assembly lines (2nd ed.). Heidelberg: Physica-Verlag.

    Google Scholar 

  • Sotskov, Y., Wagelmans, A., & Werner, F. (1998). On the calculation of the stability radius of an optimal or an approximate schedule. Annals of Operations Research, 83(0), 213–252.

    Article  Google Scholar 

  • Sotskov, Y., Dolgui, A., & Portmann, M. C. (2006). Stability analysis of an optimal balance for an assembly line with fixed cycle time. European Journal of Operational Research, 168(3), 783–797.

    Article  Google Scholar 

  • Sotskov, Y., Sotskova, N., Lai, T. C., & Werner, F. (2010). Scheduling under uncertainty: theory and algorithms. Minsk: Belorusskaya Nauka.

    Google Scholar 

  • Tasan, S., & Tunali, S. (2008). A review of the current applications of genetic algorithms in assembly line balancing. Journal of Intelligent Manufacturing, 19(1), 49–69.

    Article  Google Scholar 

  • Tsujimura, Y., Gen, M., & Kubota, E. (1995). Solving fuzzy assembly-line balancing problem with genetic algorithms. Computers & Industrial Engineering, 29(1–4), 543–547.

    Article  Google Scholar 

  • Urban, T., & Chiang, W. C. (2006). An optimal piecewise-linear program for the U-line balancing problem with stochastic task times. European Journal of Operational Research, 168(3), 771–782.

    Article  Google Scholar 

  • Van Hoesel, S., & Wagelmans, A. (1993). Sensitivity analysis of the economic lot-sizing problem. Discrete Applied Mathematics, 45(3), 291–312.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny Gurevsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurevsky, E., Battaïa, O. & Dolgui, A. Balancing of simple assembly lines under variations of task processing times. Ann Oper Res 201, 265–286 (2012). https://doi.org/10.1007/s10479-012-1203-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-012-1203-5

Keywords