Abstract
We consider a two-queue polling model in which customers upon arrival join the shorter of two queues. Customers arrive according to a Poisson process and the service times in both queues are independent and identically distributed random variables having the exponential distribution. The two-dimensional process of the numbers of customers at the queue where the server is and at the other queue is a two-dimensional Markov process. We derive its equilibrium distribution using two methodologies: the compensation approach and a reduction to a boundary value problem.
Similar content being viewed by others
References
Adan, I. J. B. F. (1991). A compensation approach for queueing problems. PhD dissertation, Eindhoven University of Technology, Eindhoven.
Adan, I. J. B. F., & Wessels, J. (1996). Shortest expected delay routing for Erlang servers. Queueing Systems, 23, 77–105.
Adan, I. J. B. F., Wessels, J., & Zijm, W. H. M. (1990). Analysis of the symmetric shorter queue problem. Stochastic Models, 6(4), 691–713.
Adan, I. J. B. F., Wessels, J., & Zijm, W. H. M. (1991). Analysis of the asymmetric shorter queue problem. Queueing Systems, 9(1), 1–58.
Adan, I. J. B. F., Wessels, J., & Zijm, W. H. M. (1993). A compensation approach for two-dimensional Markov processes. Advances in Applied Probability, 25(4), 783–817.
Adan, I. J. B. F., Boxma, O. J., & Resing, J. A. C. (2001). Queueing models with multiple waiting lines. Queueing Systems, 37(1–3), 65–98.
Adan, I. J. B. F., Kapodistria, S., & van Leeuwaarden, J. S. H. (2012). Erlang arrivals joining the shorter queue. Queueing Systems. doi:10.1007/s11134-012-9324-8.
Adan, I. J. B. F., Kulkarni, V. G., Lee, N., & Lefeber, A. A. J. (2013). Optimal routing of customers in polling systems (in preparation).
Altman, E., Jiménez, T., & Koole, G. (2001). On optimal call admission control in resource-sharing system. IEEE Transactions on Communications, 49(9), 1659–1668.
Blanc, J. P. C. (2009). Bad luck when joining the shortest queue. European Journal of Operational Research, 195(1), 167–173.
Boon, M. A. A., van der Mei, R. D., & Winands, E. M. M. (2011). Applications of polling systems. SORMS, 16, 67–82.
Boxma, O. J., & van Houtum, G. J. (1993). The compensation approach applied to a 2×2 switch. Probability in the Engineering and Informational Sciences, 7(4), 471–493.
Cohen, J. W. (1998). Analysis of the asymmetrical shortest two-server queueing model. Journal of Applied Mathematics and Stochastic Analysis, 11(2), 115–162.
Cohen, J. W., & Boxma, O. J. (1983). Boundary value problems in queueing system analysis. Amsterdam: North-Holland.
Fayolle, G., & Iasnogorodski, R. (1979). Two coupled processors: the reduction to a Riemann-Hilbert problem. Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete, 47, 325–351.
Fayolle, G., Flajolet, P., & Hofri, M. (1986). On a functional equation arising in the analysis of a protocol for a multi-access broadcast channel. Advances in Applied Probability, 18, 441–472.
Fayolle, G., Iasnogorodski, R., & Malyshev, V. (1999). Random walks in the quarter plane. New York: Springer.
Feller, W. (1968). An introduction to probability theory and its applications (Vol. 2). New York: Wiley.
Flatto, L., & McKean, H. P. (1977). Two queues in parallel. Communications on Pure and Applied Mathematics, 30(2), 255–263.
Foley, R. D., & McDonald, D. R. (2001). Join the shortest queue stability and exact asymptotics. The Annals of Applied Probability, 11(3), 569–607.
Foster, F. G. (1953). On the stochastic matrices associated with certain queueing processes. The Annals of Mathematical Statistics, 24, 355–360.
Gupta, V., Harchol Balter, M., Sigman, K., & Whitt, W. (2007). Analysis of join-the-shortest-queue routing for web server farms. Performance Evaluation, 64(9), 1062–1081.
Halfin, S. (1985). The shortest queue problem. Journal of Applied Probability, 22, 865–878.
Hordijk, A., & Koole, G. (1990). On the optimality of the generalised shortest queue policy. Probability in the Engineering and Informational Sciences, 4, 477–487.
Hordijk, A., & Spieksma, F. (1989). Constrained admission control to a queueing system. Advances in Applied Probability, 21(2), 409–431.
Houck, D. J. (1987). Comparison of policies for routing customers of parallel queueing systems. Operations Research, 35(2), 306–310.
Jacquet, P., & Merle, E. (1990). Analysis of a stack algorithm for CSMA-CD random length packet communication. IEEE Transactions on Information Theory, 36(2), 420–426.
Kingman, J. F. C. (1961). Two similar queues in parallel. The Annals of Mathematical Statistics, 32(4), 1314–1323.
Levy, H., & Sidi, M. (1990). Polling models applications, modeling and optimization. IEEE Transactions on Communications, 38, 1750–1760.
Li, H., Miyazawa, M., & Zhao, Y. Q. (2007). Geometric decay in a QBD process with countable background states with applications to a join-the-shortest-queue model. Stochastic Models, 23(3), 413–438.
Menich, R. (1987). Optimality of shortest queue routing for dependent service stations. In 26th IEEE conference on decision and control (Vol. 26, pp. 1069–1072).
Menich, R., & Serfozo, R. F. (1991). Optimality of routing and servicing in dependent parallel processing systems. Queueing Systems, 9(4), 403–418.
Resing, J. A. C. (1993). Polling systems and multitype branching processes. Queueing Systems, 13(4), 409–426.
Resing, J. A. C., & Rietman, R. (2004). The M/M/1 queue with gated random order of service. Statistica Neerlandica, 58(1), 97–110.
Stidham, S. (1985). Optimal control of admission to a queueing system. IEEE Transactions on Automatic Control, 30(8), 705–713.
Stidham, S. (2009). Optimal design of queueing systems. Boca Raton: Chapman and Hall/CRC Press.
Stidham, S., & Weber, R. (1993). A survey of Markov decision models for control of networks of queues. Queueing Systems, 13(1), 291–314.
Takagi, H. (1991a). Queueing analysis (Vol. 1). Amsterdam: North-Holland.
Takagi, H. (1991b). Application of polling models to computer networks. Computer Networks and ISDN Systems, 22, 193–211.
Takagi, H. (2000). Analysis and application of polling models. In G. Haring, C. Lindemann, & M. Reiser (Eds.), Lecture notes in computer science: Vol. 1769. Performance evaluation origins and directions (pp. 424–442). Berlin: Springer.
Vishnevskii, V. M., & Semenova, O. V. (2006). Mathematical methods to study the polling systems. Automation and Remote Control, 67, 173–220.
Whitt, W. (1986). Deciding which queue to join some counterexamples. Operations Research, 34, 55–62.
Winston, W. (1977). Optimality of the shortest line discipline. Journal of Applied Probability, 14, 181–189.
Yao, H., & Knessl, C. (2005). On the infinite server shortest queue problem symmetric case. Stochastic Models, 21(1), 101–132.
Yao, H., & Knessl, C. (2008). On the shortest queue version of the Erlang loss model. Studies in Applied Mathematics, 120(2), 129–212.
Yechiali, U. (1972). Customers’ optimal joining rules for the GI/M/s queue. Management Science, 18(7), 434–443.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Adan, I.J.B.F., Boxma, O.J., Kapodistria, S. et al. The shorter queue polling model. Ann Oper Res 241, 167–200 (2016). https://doi.org/10.1007/s10479-013-1495-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10479-013-1495-0