Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The shorter queue polling model

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We consider a two-queue polling model in which customers upon arrival join the shorter of two queues. Customers arrive according to a Poisson process and the service times in both queues are independent and identically distributed random variables having the exponential distribution. The two-dimensional process of the numbers of customers at the queue where the server is and at the other queue is a two-dimensional Markov process. We derive its equilibrium distribution using two methodologies: the compensation approach and a reduction to a boundary value problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adan, I. J. B. F. (1991). A compensation approach for queueing problems. PhD dissertation, Eindhoven University of Technology, Eindhoven.

  • Adan, I. J. B. F., & Wessels, J. (1996). Shortest expected delay routing for Erlang servers. Queueing Systems, 23, 77–105.

    Article  Google Scholar 

  • Adan, I. J. B. F., Wessels, J., & Zijm, W. H. M. (1990). Analysis of the symmetric shorter queue problem. Stochastic Models, 6(4), 691–713.

    Article  Google Scholar 

  • Adan, I. J. B. F., Wessels, J., & Zijm, W. H. M. (1991). Analysis of the asymmetric shorter queue problem. Queueing Systems, 9(1), 1–58.

    Article  Google Scholar 

  • Adan, I. J. B. F., Wessels, J., & Zijm, W. H. M. (1993). A compensation approach for two-dimensional Markov processes. Advances in Applied Probability, 25(4), 783–817.

    Article  Google Scholar 

  • Adan, I. J. B. F., Boxma, O. J., & Resing, J. A. C. (2001). Queueing models with multiple waiting lines. Queueing Systems, 37(1–3), 65–98.

    Article  Google Scholar 

  • Adan, I. J. B. F., Kapodistria, S., & van Leeuwaarden, J. S. H. (2012). Erlang arrivals joining the shorter queue. Queueing Systems. doi:10.1007/s11134-012-9324-8.

    Google Scholar 

  • Adan, I. J. B. F., Kulkarni, V. G., Lee, N., & Lefeber, A. A. J. (2013). Optimal routing of customers in polling systems (in preparation).

  • Altman, E., Jiménez, T., & Koole, G. (2001). On optimal call admission control in resource-sharing system. IEEE Transactions on Communications, 49(9), 1659–1668.

    Article  Google Scholar 

  • Blanc, J. P. C. (2009). Bad luck when joining the shortest queue. European Journal of Operational Research, 195(1), 167–173.

    Article  Google Scholar 

  • Boon, M. A. A., van der Mei, R. D., & Winands, E. M. M. (2011). Applications of polling systems. SORMS, 16, 67–82.

    Google Scholar 

  • Boxma, O. J., & van Houtum, G. J. (1993). The compensation approach applied to a 2×2 switch. Probability in the Engineering and Informational Sciences, 7(4), 471–493.

    Article  Google Scholar 

  • Cohen, J. W. (1998). Analysis of the asymmetrical shortest two-server queueing model. Journal of Applied Mathematics and Stochastic Analysis, 11(2), 115–162.

    Article  Google Scholar 

  • Cohen, J. W., & Boxma, O. J. (1983). Boundary value problems in queueing system analysis. Amsterdam: North-Holland.

    Google Scholar 

  • Fayolle, G., & Iasnogorodski, R. (1979). Two coupled processors: the reduction to a Riemann-Hilbert problem. Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete, 47, 325–351.

    Article  Google Scholar 

  • Fayolle, G., Flajolet, P., & Hofri, M. (1986). On a functional equation arising in the analysis of a protocol for a multi-access broadcast channel. Advances in Applied Probability, 18, 441–472.

    Article  Google Scholar 

  • Fayolle, G., Iasnogorodski, R., & Malyshev, V. (1999). Random walks in the quarter plane. New York: Springer.

    Book  Google Scholar 

  • Feller, W. (1968). An introduction to probability theory and its applications (Vol. 2). New York: Wiley.

    Google Scholar 

  • Flatto, L., & McKean, H. P. (1977). Two queues in parallel. Communications on Pure and Applied Mathematics, 30(2), 255–263.

    Article  Google Scholar 

  • Foley, R. D., & McDonald, D. R. (2001). Join the shortest queue stability and exact asymptotics. The Annals of Applied Probability, 11(3), 569–607.

    Google Scholar 

  • Foster, F. G. (1953). On the stochastic matrices associated with certain queueing processes. The Annals of Mathematical Statistics, 24, 355–360.

    Article  Google Scholar 

  • Gupta, V., Harchol Balter, M., Sigman, K., & Whitt, W. (2007). Analysis of join-the-shortest-queue routing for web server farms. Performance Evaluation, 64(9), 1062–1081.

    Article  Google Scholar 

  • Halfin, S. (1985). The shortest queue problem. Journal of Applied Probability, 22, 865–878.

    Article  Google Scholar 

  • Hordijk, A., & Koole, G. (1990). On the optimality of the generalised shortest queue policy. Probability in the Engineering and Informational Sciences, 4, 477–487.

    Article  Google Scholar 

  • Hordijk, A., & Spieksma, F. (1989). Constrained admission control to a queueing system. Advances in Applied Probability, 21(2), 409–431.

    Article  Google Scholar 

  • Houck, D. J. (1987). Comparison of policies for routing customers of parallel queueing systems. Operations Research, 35(2), 306–310.

    Article  Google Scholar 

  • Jacquet, P., & Merle, E. (1990). Analysis of a stack algorithm for CSMA-CD random length packet communication. IEEE Transactions on Information Theory, 36(2), 420–426.

    Article  Google Scholar 

  • Kingman, J. F. C. (1961). Two similar queues in parallel. The Annals of Mathematical Statistics, 32(4), 1314–1323.

    Article  Google Scholar 

  • Levy, H., & Sidi, M. (1990). Polling models applications, modeling and optimization. IEEE Transactions on Communications, 38, 1750–1760.

    Article  Google Scholar 

  • Li, H., Miyazawa, M., & Zhao, Y. Q. (2007). Geometric decay in a QBD process with countable background states with applications to a join-the-shortest-queue model. Stochastic Models, 23(3), 413–438.

    Article  Google Scholar 

  • Menich, R. (1987). Optimality of shortest queue routing for dependent service stations. In 26th IEEE conference on decision and control (Vol. 26, pp. 1069–1072).

    Chapter  Google Scholar 

  • Menich, R., & Serfozo, R. F. (1991). Optimality of routing and servicing in dependent parallel processing systems. Queueing Systems, 9(4), 403–418.

    Article  Google Scholar 

  • Resing, J. A. C. (1993). Polling systems and multitype branching processes. Queueing Systems, 13(4), 409–426.

    Article  Google Scholar 

  • Resing, J. A. C., & Rietman, R. (2004). The M/M/1 queue with gated random order of service. Statistica Neerlandica, 58(1), 97–110.

    Article  Google Scholar 

  • Stidham, S. (1985). Optimal control of admission to a queueing system. IEEE Transactions on Automatic Control, 30(8), 705–713.

    Article  Google Scholar 

  • Stidham, S. (2009). Optimal design of queueing systems. Boca Raton: Chapman and Hall/CRC Press.

    Book  Google Scholar 

  • Stidham, S., & Weber, R. (1993). A survey of Markov decision models for control of networks of queues. Queueing Systems, 13(1), 291–314.

    Article  Google Scholar 

  • Takagi, H. (1991a). Queueing analysis (Vol. 1). Amsterdam: North-Holland.

    Google Scholar 

  • Takagi, H. (1991b). Application of polling models to computer networks. Computer Networks and ISDN Systems, 22, 193–211.

    Article  Google Scholar 

  • Takagi, H. (2000). Analysis and application of polling models. In G. Haring, C. Lindemann, & M. Reiser (Eds.), Lecture notes in computer science: Vol. 1769. Performance evaluation origins and directions (pp. 424–442). Berlin: Springer.

    Google Scholar 

  • Vishnevskii, V. M., & Semenova, O. V. (2006). Mathematical methods to study the polling systems. Automation and Remote Control, 67, 173–220.

    Article  Google Scholar 

  • Whitt, W. (1986). Deciding which queue to join some counterexamples. Operations Research, 34, 55–62.

    Article  Google Scholar 

  • Winston, W. (1977). Optimality of the shortest line discipline. Journal of Applied Probability, 14, 181–189.

    Article  Google Scholar 

  • Yao, H., & Knessl, C. (2005). On the infinite server shortest queue problem symmetric case. Stochastic Models, 21(1), 101–132.

    Article  Google Scholar 

  • Yao, H., & Knessl, C. (2008). On the shortest queue version of the Erlang loss model. Studies in Applied Mathematics, 120(2), 129–212.

    Article  Google Scholar 

  • Yechiali, U. (1972). Customers’ optimal joining rules for the GI/M/s queue. Management Science, 18(7), 434–443.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stella Kapodistria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adan, I.J.B.F., Boxma, O.J., Kapodistria, S. et al. The shorter queue polling model. Ann Oper Res 241, 167–200 (2016). https://doi.org/10.1007/s10479-013-1495-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-013-1495-0

Keywords