Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

A data model for algorithmic multiple criteria decision analysis

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Various software tools implementing multiple criteria decision analysis (MCDA) methods have appeared over the last decades. Although MCDA methods share common features, most of the implementing software have been developed independently from scratch. Majority of the tools have a proprietary storage format and exchanging data among software is cumbersome. Common data exchange standard would be useful for an analyst wanting to apply different methods on the same problem. The Decision Deck project has proposed to build components implementing MCDA methods in a reusable and interchangeable manner. A key element in this scheme is the XMCDA standard, a proposal that aims to standardize an XML encoding of common structures appearing in MCDA models, such as criteria and performance evaluations. Although XMCDA allows to present most data structures for MCDA models, it almost completely lacks data integrity checks. In this paper we present a new comprehensive data model for MCDA problems, implemented as an XML schema. The data model includes types that are sufficient to represent multi-attribute value/utility models, ELECTRE III/TRI models, and their stochastic extensions, and AHP. We also discuss use of the data model in algorithmic MCDA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Bigaret, S., & Meyer, P. (2012). Diviz: An MCDA workflow design, execution and sharing tool. Intelligent Decision Technologies Journal, 6(4), 283–296.

    Google Scholar 

  • Brans, J., Mareschal, B., & Vincke, P. (1984). PROMETHEE: a new family of outranking methods in multicriteria analysis. In J. Brans (Ed.), Operational research (pp. 477–490). Amsterdam: IFORS 84.

  • Cailloux, O. (2010). ELECTRE and PROMETHEE MCDA methods as reusable software components. In C. H. Antunes, D. R. Insua, & L. Dias (Eds.), Proceedings of the 25th Mini-EURO Conference on Uncertainty and Robustness in Planning and Decision Making (URPDM 2010), Coimbra.

  • Fedorowicz, J., & Williams, G. B. (1986). Representing modeling knowledge in an intelligent decision support system. Decision Support Systems, 2(1), 3–14. doi:10.1016/0167-9236(86)90116-8.

    Article  Google Scholar 

  • Figueira, J., Greco, S., & Ehrgott, M. (Eds.) (2005). Multiple criteria decision analysis: State of the art surveys. New York: Springer.

  • Fourer, R., Gassmann, H. I., Ma, J., & Martin, R. K. (2009). An XML-based schema for stochastic programs. Annals of Operations Research, 166(1), 313–337. doi: 10.1007/s10479-008-0419-x.

    Article  Google Scholar 

  • Fourer, R., Ma, J., & Martin, K. (2010a). Optimization services: A framework for distributed optimization. Operations Research, 58(6), 1624–1636. doi: 10.1287/opre.1100.0880.

    Article  Google Scholar 

  • Fourer, R., Ma, J., & Martin, K. (2010b). OSiL: An instance language for optimization. Computational Optimization and Applications, 45(1), 181–203. doi: 10.1007/s10589-008-9169-6.

    Article  Google Scholar 

  • Gauthier, L., & Néel, T. (1996). SAGE: An object-oriented framework for the construction of farm decision support systems. Computers and Electronics in Agriculture, 16(1), 1–20. doi: 10.1016/S0168-1699(96)00018-X.

    Article  Google Scholar 

  • Georgopoulou, E., Sarafidis, Y., & Diakoulaki, D. (1998). Design and implementation of a group DSS for sustaining renewable energies exploitation. European Journal of Operational Research, 109(2), 483–500. doi: 10.1016/S0377-2217(98)00072-1.

    Article  Google Scholar 

  • Greco, S., Mousseau, V., & Słowiński, R. (2008). Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions. European Journal of Operational Research, 191(2), 415–435, doi: 10.1016/j.ejor.2007.08.013.

    Article  Google Scholar 

  • Guazzelli, A., Zeller, M., Chen, W., & Williams, G. (2009). PMML: An open standard for sharing models. The R Journal, 1(1):60–65.

    Google Scholar 

  • Hong, I. B., & Vogel, D. R. (1991). Data and model management in a generalized MCDM-DSS. Decision Sciences, 22(1), 1–25. doi: 10.1111/j.1540-5915.1991.tb01258.x.

    Google Scholar 

  • Hwang, C., & Yoon, K. (1981). Multiple attribute decision making: Methods and applications; A state-of-the-art survey. Newyork: Springer.

  • Jiménez, A., Ríos-Insua, S., & Mateos, A. (2006). A generic multi-attribute analysis system. Computers & Operations Research, 33(4), 1081–1101. doi: 10.1016/j.cor.2004.09.003.

    Article  Google Scholar 

  • Jármai, K. (1989). Single- and multicriteria optimization as a tool of decision support system. Computers in Industry, 11(3), 249–266, doi: 10.1016/0166-3615(89)90006-7.

    Article  Google Scholar 

  • Keeney, R., & Raiffa, H. (1976). Decisions with multiple objectives: Preferences and value tradeoffs. New York: J. Wiley.

    Google Scholar 

  • Lahdelma, R., & Salminen, P. (2001). SMAA-2: Stochastic multicriteria acceptability analysis for group decision making. Operations Research, 49(3), 444–454. doi: 10.1287/opre.49.3.444.11220.

    Article  Google Scholar 

  • Lahdelma, R., Hokkanen, J., & Salminen, P. (1998). SMAA—Stochastic multiobjective acceptability analysis. European Journal of Operational Research, 106(1), 137–143. doi: 10.1016/S0377-2217(97)00163-X.

    Article  Google Scholar 

  • Martin, M., Fuerst, W. (1984). Effective design and use of computer decision models. Management Information Systems Quarterly, 8(1), 17–26.

    Google Scholar 

  • Minch, R.P., & Sanders, G.L. (1986). Computerized information systems supporting multicriteria decision making. Decision Sciences, 17(3), 395–413. doi: 10.1111/j.1540-5915.1986.tb00233.x.

    Article  Google Scholar 

  • Natividade-Jesus, E., Coutinho-Rodrigues, J., & Antunes, C. H. (2007). A multicriteria decision support system for housing evaluation. Decision Support Systems, 43(3), 779–790, doi:10.1016/j.dss.2006.03.014.

    Article  Google Scholar 

  • Roy, B. (1991). The outranking approach and the foundations of ELECTRE methods. Theory and Decision, 31, (1):49–73.

    Article  Google Scholar 

  • Roy, B. (1996). Multicriteria methodology for decision analysis. Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Spengler, T., Geldermann, J., Hähre, S., Sieverdingbeck, A., & Rentz, O. (1998). Development of a multiple criteria based decision support system for environmental assessment of recycling measures in the iron and steel making industry. Journal of Cleaner Production, 6(1), 37–52. doi: 10.1016/S0959-6526(97)00048-6.

    Article  Google Scholar 

  • Teghem, J., Delhaye, C., & Kunsch, P.L. (1989). An interactive decision support system (IDSS) for multicriteria decision aid. Mathematical and Computer Modelling, 12(10–11), 1311–1320. doi: 10.1016/0895-7177(89)90370-1.

    Article  Google Scholar 

  • Tervonen, T. (2014). JSMAA: Open source software for SMAA computations. International Journal of Systems Science, 45(1), 69–81. doi: 10.1080/00207721.2012.659706.

    Article  Google Scholar 

  • Tervonen, T., & Figueira, J.R. (2008). A survey on stochastic multicriteria acceptability analysis methods. Journal of Multi-Criteria Decision Analysis, 15(1–2), 1–14. doi: 10.1002/mcda.407.

    Article  Google Scholar 

  • Tervonen, T., Figueira, J.R., Lahdelma, R., Almeida Dias, J., & Salminen, P. (2009). A stochastic method for robustness analysis in sorting problems. European Journal of Operational Research, 192(1), 236–242. doi: 10.1016/j.ejor.2007.09.008.

    Article  Google Scholar 

  • van Valkenhoef, G., Tervonen, T., Zwinkels, T., de Brock, B., & Hillege, H. (2013). ADDIS: A decision support system for evidence-based medicine. Decision Support Systems, 55(2), 459–475. doi: 10.1016/j.dss.2012.10.005.

    Article  Google Scholar 

  • Wallenius, J., Dyer, J. S., Fishburn, P. C., Steuer, R. E., Zionts, S., & Deb, K. (2008). Multiple criteria decision making, multiattribute utility theory: recent accomplishments and what lies ahead. Management Science, 54(7), 1336–1349.

    Article  Google Scholar 

  • Zopounidis, C., & Doumpos, M. (2000). PREFDIS: A multicriteria decision support system for sorting decision problems. Computers & Operations Research, 27(7–8), 779–797, doi:10.1016/S0305-0548(99)00118-5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Cailloux.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XSD 17 kb)

Supplementary material 2 (PDF 14 kb)

Appendix : Data model

This representation omits the measurement hierarchy (displayed in Fig. 2) and set types.

Appendix : Data model

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cailloux, O., Tervonen, T., Verhaegen, B. et al. A data model for algorithmic multiple criteria decision analysis. Ann Oper Res 217, 77–94 (2014). https://doi.org/10.1007/s10479-014-1562-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-014-1562-1

Keywords