Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Portfolio optimization with transaction costs: a two-period mean-variance model

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this paper, we study a multiperiod mean-variance portfolio optimization problem in the presence of proportional transaction costs. Many existing studies have shown that transaction costs can significantly affect investors’ behavior. However, even under simple assumptions, closed-form solutions are not easy to obtain when transaction costs are considered. As a result, they are often ignored in multiperiod portfolio analysis, which leads to suboptimal solutions. To provide better insight for this complex problem, this paper studies a two-period problem that considers one risk-free and one risky asset. Whenever there is a trade after the initial asset allocation, the investor incurs a linear transaction cost. Through a mean-variance model, we derive the closed-form expressions of the optimal thresholds for investors to re-allocate their resources. These thresholds divide the action space into three regions. Some important properties of the analytical solution are identified, which shed light on solving multiperiod problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bertsimas, D., & Pachamanova, D. (2008). Robust multiperiod portfolio management in the presence of transaction costs. Computers and Operations Research, 35(1), 3–17.

    Article  Google Scholar 

  • Best, M., & Hlouskova, J. (2005). An algorithm for portfolio optimization with transaction costs. Management Science, 51(11), 1676–1688.

    Article  Google Scholar 

  • Bi, J., Meng, Q., & Zhang, Y. (2014). Dynamic mean-variance and optimal reinsurance problems under the no-bankruptcy constraint for an insurer. Annals of Operations Research, 212(1), 43–59.

    Article  Google Scholar 

  • Çelikyurt, U., & Özekici, S. (2007). Multiperiod portfolio optimization models in stochastic markets using the mean-variance approach. European Journal of Operational Research, 179(1), 186–202.

    Article  Google Scholar 

  • Chen, A., Jen, F., & Zionts, S. (1971). The optimal portfolio revision policy. Journal of Business, 44(1), 51–61.

    Article  Google Scholar 

  • Chryssikou, E. (1998). Multiperiod portfolio optimization in the presence of transaction costs. Ph.D. thesis, Massachusetts Institute of Technology, Sloan School of Management.

  • Constantinides, G. M. (1979). Multiperiod consumption and investment behavior with convex transactions costs. Management Science, 25(11), 1127–1137.

    Article  Google Scholar 

  • Cox, J. C., & Huang, C.-F. (1989). Optimal consumption and portfolio policies when asset prices follow a diffusion process. Journal of Economic Theory, 49(1), 33–83.

    Article  Google Scholar 

  • Davis, M., & Norman, A. (1990). Portfolio selection with transaction costs. Mathematics of Operations Research, 15(4), 676–713.

    Article  Google Scholar 

  • Dumas, B., & Luciano, E. (1991). An exact solution to a dynamic portfolio choice problem under transaction costs. Journal of Finance, 46(2), 577–595.

    Article  Google Scholar 

  • Gennotte, G., & Jung, A. (1994). Investment strategies under transaction costs: the finite horizon case. Management Science, 40(3), 385–404.

    Article  Google Scholar 

  • Gülpınar, N., & Rustem, B. (2007). Worst-case robust decisions for multi-period mean-variance portfolio optimization. European Journal of Operational Research, 183(3), 981–1000.

    Article  Google Scholar 

  • Hakansson, N. (1971). Multi-period mean-variance analysis: Toward a general theory of portfolio choice. Journal of Finance, 26(4), 857–884.

    Google Scholar 

  • Jana, P., Roy, T., & Mazumder, S. (2009). Multi-objective possibilistic model for portfolio selection with transaction cost. Journal of Computational and Applied Mathematics, 228(1), 188–196.

    Article  Google Scholar 

  • Konno, H., & Wijayanayake, A. (2001). Portfolio optimization problem under concave transaction costs and minimal transaction unit constraints. Mathematical Programming, 89(2), 233–250.

    Article  Google Scholar 

  • Kozhan, R., & Schmid, W. (2009). Asset allocation with distorted beliefs and transaction costs. European Journal of Operational Research, 194(1), 236–249.

    Article  Google Scholar 

  • Kuan, C., Yeh, J., & Hsu, Y. (2009). Assessing value at risk with care, the conditional autoregressive expectile models. Journal of Econometrics, 150(2), 261–270.

    Article  Google Scholar 

  • Li, D., Chan, T., & Ng, W. (1998). Safety-first dynamic portfolio selection. Dynamics of Continuous, Discrete and Impulsive Systems, 4(4), 585–600.

    Google Scholar 

  • Li, D., & Ng, W. (2000). Optimal dynamic portfolio selection: Multiperiod mean-variance formulation. Mathematical Finance, 10(3), 387–406.

    Article  Google Scholar 

  • Liu, H. (2004). Optimal consumption and investment with transaction costs and multiple risky assets. The Journal of Finance, 59(1), 289–338.

    Article  Google Scholar 

  • Lobo, M., Fazel, M., & Boyd, S. (2007). Portfolio optimization with linear and fixed transaction costs. Annals of Operations Research, 152(1), 341–365.

    Article  Google Scholar 

  • Markowitz, H. (1952). Portfolio selection. Journal of Finance, 7(1), 77–91.

    Google Scholar 

  • Marzban, S., Mahootchi, M., & Khamseh, A. A. (2013). Developing a multi-period robust optimization model considering american style options. Annals of Operations Research, doi:10.1007/s10479-013-1461-x.

  • McFarland, H. (1988). Evaluating q as an alternative to the rate of return in measuring profitability. The Review of Economics and Statistics, 75(4), 614–622.

    Article  Google Scholar 

  • Merton, R. (1971). Optimum consumption and portfolio rules in a continuous-time model. Journal of Economic Theory, 3(4), 373–413.

    Article  Google Scholar 

  • Osorio, M. A., Gülpınar, N., & Rustem, B. (2008). A general framework for multistage mean-variance post-tax optimization. Annals of Operations Research, 157(1), 3–23.

    Article  Google Scholar 

  • Pelsser, A., & Vorst, T. (1996). Transaction costs and efficiency of portfolio strategies. European Journal of Operational Research, 91(2), 250–263.

    Article  Google Scholar 

  • Perold, A. (1984). Large-scale portfolio optimization. Management Science, 30(10), 1143–1160.

    Article  Google Scholar 

  • Samuelson, P. (1969). Lifetime portfolio selection by dynamic stochastic programming. The Review of Economics and Statistics, 51(3), 239–246.

    Article  Google Scholar 

  • Shalit, H., & Yitzhaki, S. (2002). Estimating beta. Review of Quantitative Finance and Accounting, 18(2), 95–118.

    Article  Google Scholar 

  • Steinbach, M. C. (2001). Markowitz revisited: Mean-variance models in financial portfolio analysis. SIAM Review, 43(1), 31–85.

    Article  Google Scholar 

  • Wagner, W. (2010). Diversification at financial institutions and systemic crises. Journal of Financial Intermediation, 19(3), 373–386.

    Article  Google Scholar 

  • Zhang, W., Zhang, X., & Xu, W. (2010). A risk tolerance model for portfolio adjusting problem with transaction costs based on possibilistic moments. Insurance Mathematics and Economics, 46(3), 493–499.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boray Huang.

Appendices

Appendix 1: Value function for the first period

We apply the backward dynamic programming algorithm to obtain the value function. In particular, after we have obtained the piecewise value function for the latter period, we can derive the value function for the first period as follows:

$$\begin{aligned} V_0(\hat{h}^0_0, \hat{h}^1_0)&= \max \int _a^{B^\alpha _{0}} \frac{1}{b-a} \left[ \delta \,\mathrm {E}\left( (r^0)^2 \hat{h}^{0}_{0} + R^1_{1} r^1_{0} \hat{h}^{1}_{0} \right) -\lambda \,\mathrm {E}\left( (r^0)^2 \hat{h}^{0}_{0} + R^1_{1} r^1_{0} \hat{h}^{1}_{0}\right) ^2 \right. \nonumber \\&\left. +\,\,K^\alpha _1 \lambda \left( \frac{\delta }{2\lambda }- (r^0)^2 \hat{h}^{0}_{0} -J^\alpha _1 r^1_{0} \hat{h}^{1}_{0}\right) ^2\right] \,\mathrm {d}r^1_{0} \nonumber \\&+ \int _{B^\alpha _{0}}^{B^\beta _{0}} \frac{1}{b-a}{ \left[ \delta \,\mathrm {E}\left( (r^0)^2 \hat{h}^{0}_{0} + R^1_{1} r^1_{0} \hat{h}^{1}_{0}\right) -\lambda \,\mathrm {E}\left( (r^0)^2 \hat{h}^{0}_{0} + R^1_{1} r^1_{0} \hat{h}^{1}_{0}\right) ^2\right] }\,\mathrm {d}r^1_{0} \nonumber \\&+ \int _{B^\beta _{0}}^b \frac{1}{b-a} \left[ \delta \,\mathrm {E}\left( (r^0)^2 \hat{h}^{0}_{0} + R^1_{1} r^1_{0} \hat{h}^{1}_{0} \right) -\lambda \,\mathrm {E}\left( (r^0)^2 \hat{h}^{0}_{0} + R^1_{1} r^1_{0} \hat{h}^{1}_{0}\right) ^2 \right. \nonumber \\&\left. +\,\,K^\beta _1 \lambda \left( \frac{\delta }{2\lambda }- (r^0)^2 \hat{h}^{0}_{0} -J^\beta _1 r^1_{0} \hat{h}^{1}_{0}\right) ^2\right] \,\mathrm {d}r^1_{0} \nonumber \\&= \max \int _a^b \frac{1}{b-a}{ \left[ \delta \,\mathrm {E}\left( (r^0)^2 \hat{h}^{0}_{0} + R^1_{1} r^1_{0} \hat{h}^{1}_{0}\right) -\lambda \,\mathrm {E}\left( (r^0)^2 \hat{h}^{0}_{0} + R^1_{1} r^1_{0} \hat{h}^{1}_{0} \right) ^2\right] }\,\mathrm {d}r^1_{0} \nonumber \\&+ \int _a^{B^\alpha _{0}} \! \frac{1}{b-a} K^\alpha _1 \lambda \left( \frac{\delta }{2\lambda }- (r^0)^2 \hat{h}^{0}_{0} -J^\alpha _1 r^1_{0} \hat{h}^{1}_{0}\right) ^2 \,\mathrm {d}r^1_{0} \nonumber \\&+\int _{B^\beta _{0}}^b \frac{1}{b-a} K^\beta _1 \lambda \left( \frac{\delta }{2\lambda }- (r^0)^2 \hat{h}^{0}_{0} -J^\beta _1 r^1_{0} \hat{h}^{1}_{0}\right) ^2 \,\mathrm {d}r^1_{0}. \end{aligned}$$
(57)

Since

$$\begin{aligned} \left. \left( \frac{\delta }{2\lambda }- (r^0)^2 \hat{h}^{0}_{0} -J^\alpha _1 r^1_{0} \hat{h}^{1}_{0}\right) ^3 \right| _{r^1_{T-2}=B^\alpha _{T-2}}&=0 \end{aligned}$$
(58)
$$\begin{aligned} \left. \left( \frac{\delta }{2\lambda }- (r^0)^2 \hat{h}^{0}_{0} -J^\beta _1 r^1_{0} \hat{h}^{1}_{0}\right) ^3 \right| _{r^1_{T-2}=B^\beta _{T-2}}&=0, \end{aligned}$$
(59)

the value function can be simplified to

$$\begin{aligned} V_0(\hat{h}^0_0, \hat{h}^1_0)&= \max -\frac{1}{b-a} \left\{ \delta \left[ (r^0)^2 \hat{h}^{0}_{0} a + \frac{1}{2} \,\mathrm {E}(R^1_{1}) \hat{h}^{1}_{0}a^2\right] \right. \nonumber \\&\left. \! -\,\lambda \left[ \left( (r^0)^2 \hat{h}^{0}_{0}\right) ^2 a \!+\! (r^0)^2 \,\mathrm {E}(R^1_{1}) \hat{h}^{0}_{0} \hat{h}^{1}_{0} a^2 \!+\!\frac{1}{3} \,\mathrm {E}(R^1_{1})^2 \left( \hat{h}^{1}_{0}\right) ^2 a^3\right] \right. \nonumber \\&\left. -\,\,\frac{1}{3} K^\alpha _1 \lambda \left( J^\alpha _1 \hat{h}^{1}_{0}\right) ^{-1}\left[ \frac{\delta }{2\lambda }- (r^0)^2 \hat{h}^{0}_{0} -J^\alpha _1 \hat{h}^{1}_{0} a\right] ^3 \right\} \nonumber \\&+\,\,\frac{1}{b-a} \left\{ \delta \left[ (r^0)^2 \hat{h}^{0}_{0} b + \frac{1}{2} \,\mathrm {E}(R^1_{1}) \hat{h}^1_{0}b^2\right] \right. \nonumber \\&\left. -\,\,\lambda \left[ \left( (r^0)^2 \hat{h}^{0}_{0}\right) ^2 b + (r^0)^2 \,\mathrm {E}(R^1_{1}) \hat{h}^{0}_{0} \hat{h}^{1}_{0} b^2 +\frac{1}{3} \,\mathrm {E}(R^1_{1})^2\left( \hat{h}^{1}_{0}\right) ^2 b^3\right] \right. \nonumber \\&\left. -\,\, \frac{1}{3} K^\beta _1 \lambda \left( J^\beta _1 \hat{h}^{1}_{0}\right) ^{-1} \left[ \frac{\delta }{2 \lambda }- (r^0)^2 \hat{h}^{0}_{0} -J^\beta _1 \hat{h}^{1}_{0} b\right] ^3 \right\} \end{aligned}$$
(60)
$$\begin{aligned}&= \max \delta \left[ (r^0)^2 \hat{h}^{0}_{0} + \,\mathrm {E}(R^1_{1}) \hat{h}^{1}_{0} \frac{a+b}{2}\right] - \lambda \left[ \left( (r^0)^2 \hat{h}^{0}_{0}\right) ^2 \right. \nonumber \\&\left. +\,\, (r^0)^2 \,\mathrm {E}(R^1_{1}) \hat{h}^{0}_{0} \hat{h}^{1}_{0} (a+b) + \frac{1}{3} \,\mathrm {E}(R^1_{1})^2 \left( \hat{h}^{1}_{0}\right) ^2 (a^2+ab+b^2)\right] \nonumber \\&-\,\, \frac{\lambda }{b-a} \left\{ \frac{1}{3}\frac{{\left( \frac{\delta }{2\lambda }- (r^0)^2 \hat{h}^{0}_{0}\right) }^3}{\hat{h}^{1}_{0}} \left( \frac{K^\beta _1}{J^\beta _1}-\frac{K^\alpha _1}{J^\alpha _1}\right) \right. \nonumber \\&\left. -\,\,{\left( \frac{\delta }{2\lambda }- (r^0)^2 \hat{h}^{0}_{0}\right) }^2 \left( K^\beta _1 b - K^\alpha _1 a\right) \right. \nonumber \\&\left. +\,\, \left( \frac{\delta }{2 \lambda }- (r^0)^2 \hat{h}^{0}_{0}\right) \hat{h}^{1}_{0} \left( K^\beta _1 J^\beta _1 b^2 - K^\alpha _1 J^\alpha _1 a^2\right) \right. \nonumber \\&\left. -\,\, \frac{1}{3} \left( \hat{h}^{1}_{0}\right) ^2 \left( K^\beta _1 {(J^\beta _1)}^2 b^3 - K^\beta _1 {(J^\alpha _1)}^2 a^3 \right) \right\} . \end{aligned}$$
(61)

We assume that \(R^1_{0}\sim U(a,b)\), which implies \(\,\mathrm {E}(R^1_{0})=\frac{a+b}{2}\) and \(\,\mathrm {E}(R^1_{0})^2=\frac{a^2+ab+b^2}{3}\). Therefore, the value function can be further simplified to

$$\begin{aligned} V_0(\hat{h}^0_0, \hat{h}^1_0)=&\max \delta \,\mathrm {E}\left[ {(r^0)}^2 \hat{h}^{0}_{0} + R^1_{1} R^1_{0} \hat{h}^{1}_{0}\right] - \lambda \,\mathrm {E}\left[ (r^0)^2 \hat{h}^{0}_{0}+ R^1_{T-1} R^1_{0} \left( \hat{h}^{1}_{0}\right) \right] ^2 \nonumber \\&- \frac{\lambda }{b-a} \left\{ \frac{1}{3}\frac{\left( \frac{\delta }{2\lambda }- (r^0)^2 \hat{h}^{0}_{0}\right) ^3}{\hat{h}^{1}_{0}} \left( \frac{K^\beta _1}{J^\beta _1} \! -\! \frac{K^\alpha _1}{J^\alpha _1} \right) \! -\! \left( \frac{\delta }{2\lambda }\! -\! (r^0)^2 \hat{h}^{0}_{0}\right) ^2 \right. \nonumber \\&\left. \times \left( K^\beta _1 b \! - \! K^\alpha _1 a \right) + \left( \frac{\delta }{2 \lambda }- (r^0)^2 \hat{h}^{0}_{0}\right) \hat{h}^{1}_{0} \left( K^\beta _1 J^\beta _1 b^2 - K^\alpha _1 J^\alpha _1 a^2\right) \right. \nonumber \\&\left. -\, \frac{1}{3} \left( \hat{h}^{1}_{0}\right) ^2 \left( K^\beta _1 (J^\beta _1)^2 b^3 - K^\beta _1 (J^\alpha _1)^2 a^3 \right) \right\} \end{aligned}$$
(62)
$$\begin{aligned} =&\max \delta \,\mathrm {E}\left[ (r^0)^2 \hat{h}^{0}_{0} + R^1_{T-1} R^1_{0} \hat{h}^{1}_{0}\right] - \lambda \,\mathrm {E}\left[ (r^0)^2 \hat{h}^{0}_{0}+ R^1_{T-1} R^1_{0} \left( \hat{h}^{1}_{0}\right) \right] ^2 \nonumber \\&\quad -\frac{\lambda }{3(b-a)\hat{h}^{1}_{0}} \left\{ \frac{K^\beta _1}{J^\beta _1} {\left[ \frac{\delta }{2\lambda }- (r^0)^2 \hat{h}^{0}_{0} -J^\beta _1 b \hat{h}^{1}_{0}\right] }^3 \right. \nonumber \\&\left. -\,\frac{K^\alpha _1}{J^\alpha _1} {\left[ \frac{\delta }{2\lambda }- (r^0)^2 \hat{h}^{0}_{0} -J^\alpha _1 a \hat{h}^{1}_{0}\right] }^3 \right\} . \end{aligned}$$
(63)

Appendix 2: Expressions for \(\,\mathrm {E}(w_2(\gamma ))\) and \(\,\mathrm {E}(w_2(\gamma ))^2\)

The expectation of \(w_2\) is

$$\begin{aligned} \,\mathrm {E}(w_2(\gamma ))&= \int _a^{B^\alpha _{T-2}} p(r^1_0) w^{(1)}_1 \,\mathrm {d}r^1_0 + \int _{B^\alpha _{T-2}}^{B^\beta _{T-2}} p(r^1_0) w^{(2)}_1 \,\mathrm {d}r^1_0 + \int _{B^\beta _{T-2}}^b p(r^1_0) w^{(3)}_1 \,\mathrm {d}r^1_0 \nonumber \\&= (r^0)^2 w_0+\rho \left( \frac{ \frac{\gamma }{2} - (r^0)^2 h^0_0}{J^\alpha _0 - {(r^0)}^2 (1+\alpha )}\right) , \end{aligned}$$
(64)

where \( \rho = \,\mathrm {E}(\xi ^\alpha _0) +\frac{1}{2(b-a)} \frac{ K^\alpha _1}{J^\alpha _1} \left( J^\alpha _0 -J^\alpha _1 a\right) ^2 - \frac{1}{2(b-a)} \frac{ K^\beta _1}{J^\beta _1}\left( J^\alpha _0 -J^\beta _1 b\right) ^2\).

The expectation of \((w_2)^2\) is

$$\begin{aligned}&\,\mathrm {E}(w_2(\xi ))^2\nonumber \\&\quad = \int _a^{B^\alpha _{T-2}} p(r^1_0) {(w^{(1)}_1)}^2 \,\mathrm {d}r^1_0 + \int _{B^\alpha _{T-2}}^{B^\beta _{T-2}} p(r^1_0) {(w^{(2)}_1)}^2 \,\mathrm {d}r^1_0 + \int _{B^\beta _{T-2}}^b p(r^1_0) {(w^{(3)}_1)}^2 \,\mathrm {d}r^1_0 \nonumber \\&\quad = \,\mathrm {E}\left[ {(r^0)}^2 \hat{h}^0_0 + R^1_1 R^1_0 \hat{h}^1_0 \right] ^2 + \frac{1}{(b-a)\hat{h}^1_0 } \left\{ -\frac{1}{3} \frac{ K^\alpha _1}{J^\alpha _1} \left( \frac{\gamma }{2}- {(r^0)}^2 \hat{h}^0_0- J^\alpha _1 a \hat{h}^1_0\right) ^3 \right. \nonumber \\&\left. +\,\, \frac{1}{3} \frac{ K^\beta _1}{J^\beta _1}\left( \frac{\gamma }{2}- {(r^0)}^2 \hat{h}^0_0- J^\beta _1 b \hat{h}^1_0\right) ^3 \right. \nonumber \\&\left. +\,\frac{K^\alpha _1}{J^\alpha _1} \left( \frac{\gamma }{2}- {(r^0)}^2 \hat{h}^0_0- J^\alpha _1 a \hat{h}^1_0\right) ^2 \frac{\gamma }{2} \right. \nonumber \\&\left. -\,\, \frac{K^\beta _1}{J^\beta _1} \left( \frac{\gamma }{2}- {(r^0)}^2 \hat{h}^0_0- J^\beta _1 b \hat{h}^1_0\right) ^2 \frac{\gamma }{2} \right\} \nonumber \\&\quad = \nu {\left( \frac{\frac{\gamma }{2}-{(r^0)}^2 w_0}{J^\alpha _0 - {(r^0)}^2 (1+\alpha )}\right) }^2 +2 \rho {(r^0)}^2 w_0 \left( \frac{\frac{\gamma }{2}-{(r^0)}^2 w_0}{J^\alpha _0 - {(r^0)}^2 (1+\alpha )}\right) + {\left( {(r^0)}^2 w_0\right) }^2,\nonumber \\ \end{aligned}$$
(65)

where

$$\begin{aligned} \nu&= \,\mathrm {E}(\xi ^\alpha _0)^2 + \frac{1}{3(b-a)} \left[ \frac{ K^\beta _1}{J^\beta _1} \left( J^\alpha _0 - J^\beta _1 b\right) ^3 - \frac{ K^\alpha _1}{J^\alpha _1} \left( J^\alpha _0 - J^\alpha _1 a\right) ^3\right] \nonumber \\&-\,\, \frac{1}{b-a} \left[ \frac{ K^\beta _1}{J^\beta _1} \left( J^\alpha _0 - J^\beta _1 b\right) ^2 - \frac{ K^\alpha _1}{J^\alpha _1} \left( J^\alpha _0 - J^\alpha _1 a\right) ^2\right] . \end{aligned}$$
(66)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Y.H., Ng, K.M., Huang, B. et al. Portfolio optimization with transaction costs: a two-period mean-variance model. Ann Oper Res 233, 135–156 (2015). https://doi.org/10.1007/s10479-014-1574-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-014-1574-x

Keywords