Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Hybrid constructive heuristics for the critical node problem

  • Note
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We consider the Critical Node Problem: given an undirected graph and an integer number K,  at most K nodes have to be deleted from the graph in order to minimize a connectivity measure in the residual graph. We combine the basic steps used in common greedy algorithms with some flavour of local search, in order to obtain simple hybrid heuristic algorithms. The obtained algorithms are shown to be effective, delivering improved performances (solution quality and speed) with respect to known greedy algorithms and other more sophisticated state of the art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Notes

  1. http://snap.stanford.edu/data/.

  2. Calculated as

    $$\begin{aligned} \frac{A(I)-\text {BEST}(I)}{\text {BEST}(I)} \end{aligned}$$
  3. The values of K for the FF graphs are different from those printed in Ventresca (2012)—they have been corrected in Edalatmanesh (2013).

References

  • Addis, B., Di Summa, M., & Grosso, A. (2013). Removing critical nodes from a graph: Complexity results and polynomial algorithms for the case of bounded treewidth. Discrete Applied Mathematics, 16–17, 2349–2360.

    Article  Google Scholar 

  • Aringhieri, R., Grosso, A., Hosteins, P., & Scatamacchia, R. (2015). VNS solutions for the critical node problem. In Proceedings of the VNS’14 conference. Electronic notes in discrete mathematics (Vol. 47, pp. 37–44).

  • Arulselvan, A., Commander, C. W., Elefteriadou, L., & Pardalos, P. M. (2009). Detecting critical nodes in sparse graphs. Computers & Operations Research, 36, 2193–2200.

    Article  Google Scholar 

  • Boginski, V., & Commander, C. W. (2009). Identifying critical nodes in protein–protein interaction networks. In S. Butenko, W. A. Chaovalitwongse, & P. M. Pardalos (Eds.), Clustering challenges in biological networks (pp. 153–168). Singapore: World Scientific Publishing.

    Chapter  Google Scholar 

  • Borgatti, S. P. (2006). Identifying sets of key players in a network. Computational and Mathematical Organization Theory, 12, 21–34.

    Article  Google Scholar 

  • Brandes, U. (2001). A faster algorithm for betweenness centrality. Journal of Mathematical Sociology, 25, 163–177.

    Article  Google Scholar 

  • Di Summa, M., Grosso, A., & Locatelli, M. (2011). The critical node problem over trees. Computers and Operations Research, 38, 1766–1774.

    Article  Google Scholar 

  • Di Summa, M., Grosso, A., & Locatelli, M. (2012). Branch and cut algorithms for detecting critical nodes in undirected graphs. Computational Optimization and Applications, 53, 649–680.

    Article  Google Scholar 

  • Dinh, T., Xuan, Y., Thai, M., Pardalos, P., & Znati, T. (2012). On new approaches of assessing network vulnerability: Hardness and approximation. IEEE/ACM Transactions on Networking, 20, 609–619.

    Article  Google Scholar 

  • Dinh, T. N., & Thai, M. T. (2011). Precise structural vulnerability assessment via mathematical programming. In MILCOM 2011–2011 IEEE military communications conference (pp. 1351–1356).

  • Dolan, E., & Moré, J. (2002). Benchmarking optimization software with performance profiles. Mathematical Programming, 91(2), 201–13.

    Article  Google Scholar 

  • Edalatmanesh, M. (2013). Heuristics for the critical node detection problem in large complex networks. Ph.D. thesis, Faculty of Mathematics and Science, Brock University, St. Catharines, ON.

  • Golden, B. L., & Shier, D. R. (Eds.) (2014). Network interdiction applications and extensions. Virtual Issue on Networks. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-0037/homepage/virtual_issue_-_network_interdiction_applications_and_extensions.htm.

  • Hopcroft, J., & Tarjan, R. (1973). Algorithm 447: Efficient algorithms for graph manipulation. Communications of the ACM, 16(6), 372–378.

    Article  Google Scholar 

  • Papadimitriou, C., & Steiglitz, K. (1982). Combinatorial optimization: Algorithms and complexity. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Shen, S., & Smith, J. (2012). Polynomial-time algorithms for solving a class of critical node problems on trees and series–parallel graphs. Networks, 60(2), 103–119. doi:10.1002/net.20464.

    Google Scholar 

  • Shen, S., Smith, J., & Goli, R. (2012). Exact interdiction models and algorithms for disconnecting networks via node deletions. Discrete Optimization, 9, 172–88.

    Article  Google Scholar 

  • Ventresca, M. (2012). Global search algorithms using a combinatorial unranking-based problem representation for the critical node detection problem. Computers & Operations Research, 39, 2763–2775.

    Article  Google Scholar 

  • Ventresca, M., & Aleman, D. (2014). A derandomized approximation algorithm for the critical node detection problem. Computers and Operations Research, 43, 261–270.

    Article  Google Scholar 

  • Ventresca, M., & Aleman, D. (2015). Efficiently identifying critical nodes in large complex networks. Computational Social Networks, 2(1), 6. doi:10.1186/s40649-015-0010-y.

    Article  Google Scholar 

  • Veremyev, A., Boginski, V., & Pasiliao, E. (2014). Exact identification of critical nodes in sparse networks via new compact formulations. Optimization Letters, 8, 1245–1259.

    Article  Google Scholar 

  • Veremyev, A., Prokopyev, O., & Pasiliao, E. (2014). An integer programming framework for critical elements detection in graphs. Journal of Combinatorial Optimization, 28, 233–273.

    Article  Google Scholar 

  • Veremyev, A., Prokopyev, O., & Pasiliao, E. (2015). Critical nodes for distance-based connectivity and related problems in graphs. Networks, 66, 170–195.

    Article  Google Scholar 

  • Walteros, J., & Pardalos, P. (2012). Selected topics in critical element detection. In N. J. Daras (Ed.), Applications of mathematics and informatics in military science, Springer optimization and its applications (Vol. 71, pp. 9–26). New York: Springer. doi:10.1007/978-1-4614-4109-0_2.

    Chapter  Google Scholar 

  • Wollmer, R. (1964). Removing arcs from a network. Operations Research, 12, 934–940.

    Article  Google Scholar 

  • Wood, R. K. (1993). Deterministic network interdiction. Mathematical and Computer Modelling, 17, 1–18.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Aringhieri.

Additional information

Work supported by a Google Focused Grant on Mathematical Programming, project “Exact and Heuristic Algorithms for Detecting Critical Nodes in Graphs”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Addis, B., Aringhieri, R., Grosso, A. et al. Hybrid constructive heuristics for the critical node problem. Ann Oper Res 238, 637–649 (2016). https://doi.org/10.1007/s10479-016-2110-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-016-2110-y

Keywords