Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Variable selection in data envelopment analysis via Akaike’s information criteria

  • Original Paper
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The decision makers always suffer from predicament in choosing appropriate variable set to evaluate/improve production efficiencies in many applications of data envelopment analysis (DEA). The selected data set may exist information redundancy. On that account, this study proposes an alternative approach to screen out proper input and output variables set for evaluation via Akaike’s information criteria (AIC) rule. This method mainly focuses on assessing the importance of subset of original variables rather than testing the marginal role of variables one by one in many other methods. In terms of the proposed approach, the most optimized variable set contains the least redundant information, which provides decision support to the decision makers. Besides, we also define redundant/cross redundant variables with the form of theorems and give the proofs subsequently. In addition, the AIC approach is firstly extended to stochastic data set to select an appropriate set of stochastic variables as well. Finally, the proposed approach has been applied to some data sets from given data and prior DEA literatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Which are efficiency contribution measure (ECM) (Pastor et al. 2002), principal component analysis (PCA)-DEA (Ueda and Hoshiai 1997; Adler and Golany 2001), a regression-based test (RB) (Ruggiero 2005) and bootstrapping for variable selection (BS) (Simar and Wilson 2001).

  2. Here, noteworthy that AIC method is adopted instead of other information criteria methods (e.g. BIC, Bayes information criteria) because it has the similar results with BIC and has concise formulation and lighter computational burden.

  3. Here, the variable set \(P/\{X_i\}\quad \)is the set that contains all elements in set P except Xi, where P is the the input variable subset. The similar explanation is also appropriate for output subset \(Q/\{Y_i\}\quad \)in other Theorems.

References

  • Adler, N., & Golany, B. (2001). Evaluation of deregulated airline networks using data envelopment analysis combined with principal component analysis with an application to Western Europe. European Journal of Operational Research, 132, 260–273.

    Article  Google Scholar 

  • Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov & F. Csake (Eds.), Second international symposium on information theory (pp. 267–281). Budapest: Akademiai Kaido.

    Google Scholar 

  • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control AC-19 (pp. 716–723).

  • An, Q. X., Chen, X. X., Wu, J., & Liang, L. (2015). Measuring slack-based efficiency for commercial banks in China by using a two-stage DEA model with undesirable output. Annals of Operations Research, 235, 13–35.

    Article  Google Scholar 

  • Anzanello, M. J., Albin, S. L., & Chaovalitwongse, W. A. (2012). Multicriteria variable selection for classification of production batches. European Journal of Operational Research, 218, 97–105.

    Article  Google Scholar 

  • Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30(11), 1078–1092.

    Article  Google Scholar 

  • Basak, I. (2002). On the use of information criteria in analytic hierarchy process. European Journal of Operational Research, 141, 200–216.

    Article  Google Scholar 

  • Boussofiane, A., Dyson, R. G., & Thanassoulis, E. (1991). Applied data envelopment analysis. European Journal of Operational Research, 52, 1–15.

    Article  Google Scholar 

  • Bozdogan, H. (1987). Model-selection and Akaike’s information criterion (AIC): The general theory and its analytical extensions. Psychometrika, 52, 345–370.

    Article  Google Scholar 

  • Bravo-Ureta, B. E., Solfs, D., Lopez, V. H. M., Maripani, J. F., Thiam, A., & Rivas, T. (2007). Technical efficiency in farming—A meta-regression analysis. Journal of Productivity Analysis, 27, 37–72.

    Article  Google Scholar 

  • Carlos, S. C., Yolanda, F. C., & Cecilio, M. M. (2005). Measuring DEA efficiency in Internet companies. Decision Support Systems, 38, 557–573.

    Article  Google Scholar 

  • Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2, 429–444.

    Article  Google Scholar 

  • Chu, J. F., Wu, J., & Song, M. L. (2016). An SBM-DEA model with parallel computing design for environmental efficiency evaluation in the big data context: A transportation system application. Annals of Operations Research. doi:10.1007/s10479-016-2264-7.

  • Cinca, S., & Molinero, C. M. (2004). Selecting DEA specifications and ranking units via PCA. Journal of the Operational Research Society, 55(5), 521–528.

    Article  Google Scholar 

  • Coelli, T., Prasada Rao, D. S., & Battese, G. E. (1999). An introduction to efficiency and productivity analysis. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Cooper, W. W., Deng, H., Huang, Z., et al. (2004). Chance constrained programming approaches to congestion in stochastic data envelopment analysis. European Journal of Operational Research, 155(2), 487–501.

    Article  Google Scholar 

  • Cooper, W. W., Sieford, L. M., & Tone, K. (2000). Data envelopment analysis: A comprehensive text with models, applications, references and DEA solver software. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Dario, C. & Simar, L. (2007). Advanced robust and nonparametric methods in efficiency analysis. New York: Springer, XXII: 248.

  • Du, J., Wang, J., Chen, Y., Zhou, S. Y., & Zhu, J. (2014). Incorporating health outcomes in Pennsylvania hospital efficiency: An addictive super-efficiency DEA approach. Annals of Operations Research, 221, 161–172.

    Article  Google Scholar 

  • Dyson, R. G., Allen, R., Camanho, A. S., Podinovski, V. V., Sarrico, C. S., & Shale, E. A. (2001). Pitfalls snd protocols in DEA. European Journal of Operational Research, 132, 245–259.

    Article  Google Scholar 

  • Fethi, M. D., Jackson, P. M., & Weyman-Jones, T. G. (2002). Measuring the efficiency of European airlines: An application of DEA and tobit analysis. Discussion Paper, University of Leicester.

  • Friedman, L., & Sinuany-Stern, Z. (1998). Combining ranking scales and selecting variables in the DEA context: The case of industrial branches. Computers and Operations Research, 25(9), 781–791.

    Article  Google Scholar 

  • Gong, Y., Zhu, J., Chen, Y., & Cook, W. D. (2016). DEA as a tool for auditing: Application to Chinese manufacturing industry with parallel network structures. Annals of Operations Research. doi:10.1007/s10479-016-2197-1.

  • Grosskopf, S. (1996). Statistical inference and nonparametric efficiency: A selective survey. The Journal of Productivity Analysis, 7, 161–176.

    Article  Google Scholar 

  • Hoff, A. (2007). Second stage DEA: Comparison of approaches for modelling the DEA score. European Journal of Operational Research, 181, 425–435.

    Article  Google Scholar 

  • Huang, Z., & Li, S. X. (1996). Dominance stochastic models in data envelopment analysis. European Journal of Operational Research, 95(2), 390–403.

    Article  Google Scholar 

  • Hughes, A., & Yaisawarng, S. (2004). Sensitivity and dimensionality tests of DEA efficiency scores. European Journal of Operational Research, 154(2), 410–422.

    Article  Google Scholar 

  • Jenkins, L., & Anderson, M. (2003). A multivariate statistical approach to reducing the number of variables in data envelopment analysis. European Journal of Operation Research, 147, 51–61.

    Article  Google Scholar 

  • Klimberg, R. & Puddicombe, M. (1995). A multiple objective approach to data envelopment analysis, Working paper 95-05, School of Management, Boston University, MA.

  • Kyuseok, L., & Kyuwan, C. (2009). Cross redundancy and sensitivity in DEA models. Journal of Productivity Analysis, 34, 151–165.

    Google Scholar 

  • Latruffe, L., Balcombe, K., Davidova, S., & Zawalinska, K. (2004). Determinants of technical efficiency of crop and livestock farms in Poland. Applied Economics, 36, 1255–1263.

    Article  Google Scholar 

  • Li, Y., Yang, F., Liang, L., & Hua, Z. (2008). Allocating the fixed cost as a complement of other cost inputs: A DEA approach. European Journal of Operational Research, 197(1), 389–401.

    Article  Google Scholar 

  • Liang, L., Wu, J., Cook, W. D., & Zhu, J. (2008). The DEA game cross-efficiency model and its Nash equilibrium. Operations Research, 56, 1278–1288.

    Article  Google Scholar 

  • Luo, Y., Bi, G. B., & Liang, L. (2012). Input/output indicator selection for DEA efficiency evaluation: An empirical study of Chinese commercial banks. Expert System with Application, 39, 1118–1123.

    Article  Google Scholar 

  • McDonald, J. (2008). Using least squares and tobit in second stage DEA efficiency analyses. European Journal of Operational Research, 197, 792–798.

    Article  Google Scholar 

  • Niranjan, R. N., & Andrew, L. J. (2011). Guidelines for using variable selection techniques in data envelopment analysis. European Journal of Operational Research, 215, 662–669.

    Article  Google Scholar 

  • Nunamaker, T. R. (1985). Using data envelopment analysis to measure the efficiency of non-profit organizations: A critical evaluation. Managerial and Decision Economics, 6(1), 50–58.

    Article  Google Scholar 

  • Pastor, J. T., Ruiz, J. L., & Sirvent, I. (2002). A statistical test for nested radial DEA models. Operations Research, 50(4), 728–735.

    Article  Google Scholar 

  • Raftery, A. E. (1996). Bayesian model selection in social research. In P. V. Marsden (Ed.), Sociological methodology (Vol. 25, pp. 111–163). Oxford: Basil Blackwell.

    Google Scholar 

  • Ragsdale, C. T. (2001). Spreadsheet modeling and decision analysis (3rd ed.). Cincinnati, OH: South-Western.

    Google Scholar 

  • Rao, C. R., & Wu, Y. (1989). A strongly consistent procedure for model selection in regression problem. Biometrika, 76, 369–374.

    Article  Google Scholar 

  • Ruggiero, J. (2005). Impact assessment of input omission on DEA. International, Journal of Information Technology and Decision Making, 04(03), 359–368.

    Article  Google Scholar 

  • Sarkis, J. (2000). A comparative analysis of DEA as a discrete alternative multiple criteria decision tool. European Journal of Operational Research, 123, 543–557.

    Article  Google Scholar 

  • Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461–464.

    Article  Google Scholar 

  • Sengupta, J. K. (1990). Test of efficiency in data envelopment analysis. Computers and Operations Research, 17(2), 121–132.

    Article  Google Scholar 

  • Simar, L. (2007). How to improve the performances of DEA/FDH estimators in the presence of noise? Journal of Productivity Analysis, 28(3), 183–201.

    Article  Google Scholar 

  • Simar, L., & Wilson, P. W. (2001). Testing restrictions in nonparametric efficiency models. Communications in Statistics, 30(1), 159–184.

    Article  Google Scholar 

  • Simar, L., & Zelenyuk, V. (2011). Stochastic FDH/DEA estimators for frontier analysis. Journal of Productivity Analysis, 36(1), 1–20.

    Article  Google Scholar 

  • Sinuany, S. Z., & Ben, G. U. (1994). Academic departments efficiency via DEA. Computers and Operations Research, 21, 543–556.

    Article  Google Scholar 

  • Soleimani-Damaneh, M., & Zarepisheh, M. (2009). Shannon’s entropy for combining the efficiency results of different DEA models: Method and application. Expert Systems with Applications, 36, 5146–5150.

    Article  Google Scholar 

  • Song, M. L., Fisher, R., Wang, J. L., & Cui, L. B. (2016). Environmental performance evaluation with big data: Theories and methods. Annals of Operations Research. doi:10.1007/s10479-016-2158-8.

  • Ueda, T., & Hoshiai, Y. (1997). Application of principal component analysis for parsimonious summarization of DEA inputs and/or outputs. Journal of the Operations Research Society of Japan, 40(4), 466–478.

    Google Scholar 

  • Wagner, J. M., & Shimshak, D. G. (2007). Stepwise selection of variables in data envelopment analysis: Procedures and managerial perspectives. European Journal of Operational Research, 180, 57–67.

    Article  Google Scholar 

  • Wong, Y. H. B., & Beasley, J. E. (1990). Restricting weight flexibility in data envelopment analysis. Journal of Operational Research Society, 41(9), 829–835.

    Article  Google Scholar 

  • Wu, J., Xiong, B. B., An, Q. X., Sun, J. S., & Wu, H. Q. (2015). Total-factor energy efficiency evaluation of Chinese industry by using two-stage DEA model with shared inputs. Annals of Operations Research. doi:10.1007/s10479-015-1938-x.

  • Wu, J., & Zhou, Z. X. (2015). A mixed-objective integer DEA model. Annals of Operations Research, 228, 81–95.

    Article  Google Scholar 

  • Wu, Y. (2008). Simultaneous change point analysis and variable selection in a regression problem. Journal of Multivariate Analysis, 99, 2154–2171.

    Article  Google Scholar 

  • Yang, F., Yuan, Q. Q., Du, S. F., & Liang, L. (2014). Reserving relief supplies for earthquake: A multi-attribute decision making of China Red Cross. Annals of Operations Research. doi:10.1007/s10479-014-1749-5.

Download references

Acknowledgements

The authors thank the editor, an associate editor and two reviewers for their valuable comments which led to a considerable improvement of the manuscript. This research is supported by the Youth Innovation Promotion Association of Chinese Academy of Sciences (CX2040160004), the National Natural Science Foundation of China (Grant Nos. 71271196, 71601067 and 71671172), and Anhui Provincial Natural Science Foundation (No. 1708085MH176).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Yang.

Appendices

Appendix 1

Based on Wagner and Shimshak (2007), ACE is shown as follows:

$$\begin{aligned} { ACE}_j \{X_i \}=\frac{\mathop {\sum }\nolimits _{j=1}^n {[E_j (M,S)-E_j (M/{\{X_i \}},S)]} }{n} \end{aligned}$$

where \(ACE_j \{X_i \}\) is the ith input’s average change efficiency of \(DMU_{\mathrm{j}} \), and \(E_j(M,S)\) and \(E_j(M/{\{X_i\}},S)\) are the efficiencies of \(DMU_{\mathrm{j}} \) based upon CCR model with considering output set S and input set M and \(M/{\{X_i\}}\), respectively. n is the number of DMUs.

ECM can be described below according to Pastor et al. (2002):

$$\begin{aligned} { ECM}_j \{X_{\mathrm{j}}\}=\frac{E_j(M,S)}{E_j (M/\{X_i\},S)} \end{aligned}$$

where \(ECM_j \{i\}\) denotes the efficiency contribution measure of the ith input to \(DMU_{\mathrm{j}} \), and \(E_j (M,S)\) and \(E_j(M/{\{X_i\}},S)\) have the same meanings as before.

Appendix 2

$$\begin{aligned} \theta _j =\mathop {\sum }\limits _{r\in {Q}'} {\beta _r Y_{rj}} -\mathop {\sum }\limits _{i\in {P}'} {\alpha _i X_{ij}} +\varepsilon _j ,j\in N \nonumber \\ \alpha _i ,\beta _r \ge 0,\forall i\in {P}',r\in {Q}' \end{aligned}$$
(2)

We show how to calculate the maximum likelihood estimate (\({{ MLE}}\)) in model (4). From model (2), we obtain a probability density function

$$\begin{aligned}&f\left( \theta _j+\mathop {\sum }\limits _{i\in {P}'} {\alpha _i X_{ij} } -\mathop {\sum }\limits _{r\in {Q}'} {\beta _r Y_{rj} } \left. \right| \alpha _i ,\beta _r \right) \nonumber \\&\quad =\frac{1}{\sqrt{2\pi }\sigma _\varepsilon }\exp \left\{ -\frac{\left( \theta _j +\mathop {\sum }\nolimits _{i\in {P}'} {\alpha _i X_{ij} } -\mathop {\sum }\nolimits _{r\in {Q}'} {\beta _r Y_{rj} } \right) ^2 }{2\sigma _\varepsilon ^2 }\right\} \end{aligned}$$
(14)

So, the MLE was obtained through following system of equations

$$\begin{aligned} { MLE}(P,Q)= & {} \prod _{j=1}^n f\left( \theta _j +\mathop {\sum }\limits _{i\in {P}'} {\alpha _i X_{ij}} -\mathop {\mathop {\sum }\limits }\limits _{r\in {Q}'} {\beta _r Y_{rj} } \bigg |\alpha _i ,\beta _r \right) \nonumber \\= & {} \prod _{j=1}^n \frac{1}{\sqrt{2\pi }\sigma _\varepsilon }\exp \left\{ -\frac{(\theta _j +\mathop {\sum }\nolimits _{i\in {P}'} {\alpha _i X_{ij} } -\mathop {\sum }\nolimits _{r\in {Q}'} {\beta _r Y_{rj} } )^2 }{2\sigma _\varepsilon ^2 }\right\} \nonumber \\= & {} \left( \frac{1}{\sqrt{2\pi }}\right) ^{n}\sigma _\varepsilon ^{-n} \exp \left\{ -\frac{\mathop {\sum }\nolimits _{j=1}^n {(\theta _j +\mathop {\sum }\nolimits _{i\in {P}'} {\alpha _i X_{ij} } -\mathop {\sum }\nolimits _{r\in {Q}'} {\beta _r Y_{rj}} )^2 } }{2\sigma _\varepsilon ^2 }\right\} \nonumber \\ \end{aligned}$$
(15)

Then, the natural logarithmic transformation of MLE is as follows

$$\begin{aligned} \ln [{ MLE}(P,Q)]= & {} -n\ln \left( \sqrt{2\pi }\right) -n\ln \sigma _\varepsilon -\frac{1}{2\sigma _\varepsilon ^2 }\mathop {\sum }\limits _{j=1}^n \nonumber \\&\times \,{\left( \theta _j +\mathop {\sum }\limits _{i\in {P}'} {\alpha _i X_{ij}} -\mathop {\sum }\limits _{r\in {Q}'} {\beta _r Y_{rj} } \right) ^2 } \end{aligned}$$
(16)

\(\ln [{ MLE}(P,Q)]\) can be maximized by setting the first derivative with respect to \(\sigma _\varepsilon \), equal to zero and solving the resulting equation for \(\sigma _\varepsilon \). So we have

$$\begin{aligned} \frac{\partial \ln [{ MLE}(P,Q)]}{\partial \sigma _\varepsilon }= & {} -n\sigma _\varepsilon ^{-1} +\sigma _\varepsilon ^{-3} \mathop {\sum }\limits _{j=1}^n {\left( \theta _j +\mathop {\sum }\limits _{i\in {P}'} {\alpha _i X_{ij}} -\mathop {\sum }\limits _{r\in {Q}'} {\beta _r Y_{rj} } \right) ^2 } =0 \end{aligned}$$
(17)

and

$$\begin{aligned} \mathop {\sigma _\varepsilon ^2 }\limits ^\wedge =\frac{1}{n}\mathop {\sum }\limits _{j=1}^n {\left( \theta _j +\mathop {\sum }\limits _{i\in {P}'} {\alpha _i X_{ij}} -\mathop {\sum }\limits _{r\in {Q}'} {\beta _r Y_{rj} } \right) ^2 } \end{aligned}$$
(18)

Then, the remaining question is how to solve following model

$$\begin{aligned} \mathop {\min }\limits _{\alpha _i ,\beta _r } \mathop {\sum }\limits _{j=1}^n {\left( \theta _j +\mathop {\sum }\limits _{i\in {P}'} {\alpha _i X_{ij}} -\mathop {\sum }\limits _{r\in {Q}'} {\beta _r Y_{rj}} \right) ^2 }\nonumber \\ s.t. \alpha _i ,\beta _r \ge 0,\forall i\in {P}',r\in {Q}' \end{aligned}$$
(19)

where the constraints of model (19) are from model (2). The objective function of model (19) is nonlinear, and its constraints are linear. It can be easily solved by using the function “Isqlin” in Matlab software. Suppose the optimal solution to model (3) is (\(\alpha _i^*,\beta _r^*,\forall i\in P,r\in Q)\). So, based upon (18), we have

$$\begin{aligned} \mathop {\sigma _\varepsilon ^2 }\limits ^\wedge =\frac{1}{n}\mathop {\sum }\limits _{j=1}^n {\left( \theta _j +\mathop {\sum }\limits _{i\in {P}'} {\alpha _i^*X_{ij}} -\mathop {\sum }\limits _{r\in {Q}'} {\beta _r^*Y_{rj}} \right) ^2 } \end{aligned}$$
(20)

and the minimum of AIC estimator is

$$\begin{aligned} \mathop {\min }\limits _{P,Q} { AIC}(P,Q)= & {} n[\ln (2\pi )+\ln \mathop {\sigma _\varepsilon ^2}\limits ^\wedge +1]+2(| P|+| Q |) \end{aligned}$$
(21)
$$\begin{aligned} { AIC}(P,Q)= & {} -2\ln [{ MLE}(P,Q)]+2(|P|+|Q|) \end{aligned}$$
(3)

Appendix 3

Theorem 1

If an input variable is the exact nonnegative linear combination of other variables in input variable subset P, such as \(X_i ={ ENLC}(P/{(X_i )}),\quad \forall X_i\in P, i.e.\, X_i= \sum \nolimits _{\begin{array}{c} k=1 \\ k\ne i \end{array}}^p {\lambda _k} X_k, \forall X_k\in P/{\{X_i\}}\), it’s noteworthy that there are at least one \(\lambda _k\) greater than zero. Then the following equation will be achieved: \({ AIC}(P,Q)-{ AIC}(P/{(X_i^ )},Q)= 2 \), here, Q is a nonvoid subset of output variables. Then, it comes to a conclusion that \(X_i\) is a redundant variable.

Proof of Theorem 1

Firstly, we prove that \(E_0^*(P/\{X_i\},Q)=E_0^*(P,Q),\) Denote the optimal solution to the model (1) based upon input subset P and output subset Q as (\(\mu _r^*,\upsilon _i^*,\forall r,i;)\), and its corresponding optimal efficiency of DMU\(_{0 }\) as \(E_0^*(P,Q)\).

The proof of this theorem can be divided into two parts:

Part 1: The efficiency based upon the model including a variable (input or output) is not less than the value based upon the model excluding the variable (Hughes and Yaisawarng 2004; Li et al. 2008). So we obtain

$$\begin{aligned} E_0^*(P/\{X_i \},Q)\le E_0^*(P,Q), \forall i\in {P}'\subset {M}'. \end{aligned}$$
(24)

Part 2: The second part of the proof can operate via two cases as follows:

Case 1: \(\upsilon _i^*=0\)

Let \(\mu _r^{\prime } =\mu _r^*,\upsilon _k^{\prime } =\upsilon _k^*,\forall r\in {Q}',k\in {P}'/\{i\};\), then \((\mu _r^{\prime } ,\upsilon _i^{\prime } ,\forall r\in {Q}',k\in {P}'/\{i\};)\) is a feasible solution to model (1) corresponding to \(M=P/\{X_i\},S=Q\), because it satisfies all the constraints of model (1), such as

$$\begin{aligned} \mathop {\sum }\limits _{r\in {Q}'} {\mu _r^{\prime } y_{rj} } -\mathop {\sum }\limits _{k\in {P}'/\{i\}} {\upsilon _k^{\prime } x_{kj} } =\mathop {\sum }\limits _{r\in {Q}'}{\mu _r^*y_{rj} } -\mathop {\sum }\limits _{k\in {P}'/\{i\}} {\upsilon _k^*x_{kj} } \le 0,\forall j, \end{aligned}$$

and

$$\begin{aligned} \mathop {\sum }\limits _{k\in {P}'/\{i\}} {\upsilon _k^{\prime } x_{k0} } =\mathop {\sum }\limits _{k\in {P}'/\{i\}} {\upsilon _k^*x_{k0} } =\mathop {\sum }\limits _{k\in {P}'} {\upsilon _k^*x_{k0} } -\upsilon _i^*x_{i0} =1-0=1. \end{aligned}$$

Thus, when input and output subset is \(P/\{X_i\}\) and Q, the optimal efficiency of \(\hbox {DMU}_{0}\) in model (1) is

$$\begin{aligned} E_0^*(P/\{X_i\},Q)\ge \mathop {\sum }\limits _{r\in {Q}'} {\mu _r^{\prime } y_{rj} } =\mathop {\sum }\limits _{r\in {Q}'} {\mu _r^*y_{rj} } =E_0^*(P,Q),\forall i\in {P}'\subset {M}' \end{aligned}$$
(25)

Case 2: \(\upsilon _i^*>0\)

From Definition 1, we obtain \(X_i =\mathop {\sum }\limits _{k\in {P}'/\{i\}} {\lambda _k X_k}\), for \(X_i ={ ENLC}(X_1 ,\ldots ,X_{i-1} ,X_{i+1} ,\ldots ,X_p )\).

Let \(\mu _r^{\prime } =\mu _r^*,\upsilon _k^{\prime } =\upsilon _k^*+\lambda _k *\upsilon _i^*,\forall r\in {Q}',k\in {P}'/\{i\};\) naturally, \(\mu _r'\ge 0,\;\upsilon _k' \ge 0,\)then \((\mu _r' ,\upsilon _k^{\prime } ,\forall r,k;)\) is a feasible solution to model (1) corresponding to \(P/\{X_i\}\) and Q, because it also satisfies all the constraints of model (1), such as

$$\begin{aligned} \mathop {\sum }\limits _{r\in {Q}'} {\mu _r' y_{rj} } -\mathop {\sum }\limits _{k\in P{\prime }/\{i\}} {\upsilon _k' x_{kj} }= & {} \mathop {\sum }\limits _{r\in Q'} {\mu _r^*y_{rj} } -\mathop {\sum }\limits _{k\in P'/\{i\}} {(\upsilon _k^*+\lambda _k *\upsilon _i^*)x_{kj} }\nonumber \\= & {} \mathop {\sum }\limits _{r\in Q{\prime }} {\mu _r^*y_{rj} } -\mathop {\sum }\limits _{k\in P{\prime }/\{i\}} {\upsilon _k^*x_{kj} } -\upsilon _i^**\mathop {\sum }\limits _{k\in P'/\{i\}} {\lambda _k x_{kj} } , \nonumber \\= & {} \mathop {\sum }\limits _{r\in Q'} {\mu _r^*y_{rj} } -\mathop {\sum }\limits _{k\in P'/\{i\}} {\upsilon _k^*x_{kj} } -\upsilon _i^**x_{ij} \le 0,\forall j \end{aligned}$$
(26)

and \(\mathop {\sum }\limits _{k\in P'/\{i\}} {\upsilon _k' x_{k0} } =\mathop {\sum }\limits _{k\in P'/\{i\}} {(\upsilon _k^*+\lambda _k *\upsilon _i^*)x_{kj} } =\mathop {\sum }\limits _{k\in P'} {\upsilon _k^*x_{k0} } =1\).

Thus, the optimal efficiency of \(\hbox {DMU}_{0}\) in case of \(P/\{X_i\}\) and Q in model (1) is

$$\begin{aligned} E_0^*(P/\{X_i\},Q)\ge \mathop {\sum }\limits _{r\in Q'} {\mu _r' y_{rj} } =\mathop {\sum }\limits _{r\in Q'} {\mu _r^*y_{rj} } =E_0^*(P,Q),\forall i\in P{\prime }\subset M' \end{aligned}$$
(27)

From (25) and (27), we obtain

$$\begin{aligned} E_0^*(P/\{X_i\},Q)\ge E_0^*(P,Q),\forall i\in P{\prime }\subset M' \end{aligned}$$
(28)

From (24) and (28), we get

$$\begin{aligned} E_0^*(P/\{X_i\},Q)=E_0^*(P,Q),\forall i\in P'\subset M';\forall Q\subset S,Q\ne \emptyset \end{aligned}$$

By arbitrariness, we get \(E_j^*(P/\{X_i\},Q)=E_j^*(P,Q),\forall j\in N\).

Secondly, we prove that \(\mathop {\sum }\nolimits _{r\in Q'} {{\beta }_r^{'*} y_{rj} } -\mathop {\sum }\nolimits _{k\in P'/\{i\}} {{\alpha }_k^{'*} x_{kj} } =\mathop {\sum }\nolimits _{r\in Q'} {\beta _r^*y_{rj} } -\mathop {\sum }\nolimits _{k\in P'} {\alpha _k^*x_{kj} }\), where (\(\beta _r^*,\alpha _k^*)\) (or (\({\beta }_r^{'*} ,{\alpha }_k^{'*} ))\) is the optimal solution of model (19) with considering input set P (or \(P/\{X_i\})\) and output Q.

From (26), we have \(X_i =\mathop {\sum }\nolimits _{k\in P'/\{i\}} {\lambda _k X_k } \), set \({\alpha }'_k =\alpha _k^*+\lambda _k *\alpha _i^*\;, \beta _r' =\beta _r^*\). Then, \(\alpha _k' \ge 0,\;\beta _r' \ge 0.\) To each \(DMU_j\),

$$\begin{aligned} \mathop {\sum }\limits _{r\in Q'} {\beta _r' y_{rj} } -\mathop {\sum }\limits _{k\in P'/\{i\}} {\alpha _k' x_{kj} }= & {} \mathop {\sum }\limits _{r\in Q'} {\beta _r^*y_{rj} } -\mathop {\sum }\limits _{k\in P'/\{i\}} {(\alpha _k^*+\lambda _k*\alpha _i^*)x_{kj} } \\= & {} \mathop {\sum }\limits _{r\in Q'} {\beta _r^*y_{rj} } -\mathop {\sum }\limits _{k\in P'/\{i\}} {\alpha _k^*x_{kj} } +\alpha _i^**\mathop {\sum }\limits _{k\in P'/\{i\}} {\lambda _k x_{kj} } , \\= & {} \mathop {\sum }\limits _{r\in Q'} {\beta _r^*y_{rj} } -\mathop {\sum }\limits _{k\in P'/\{i\}} {\alpha _k^*x_{kj} } +\alpha _i^**x_{ij} , \\= & {} \mathop {\sum }\limits _{r\in Q'} {\beta _r^*y_{rj} } -\mathop {\sum }\limits _{k\in P'} {\alpha _k^*x_{kj} } . \end{aligned}$$

Then, (\({\beta }'_r ,{\alpha }'_k)\) is the optimal solution of model (19) with considering input data set \(P/\{X_i\}\) and output data set Q. Thus, \(\beta _r' ={\beta }_r^{'*} ,{\alpha }'_i ={\alpha }_i^{'*}\). Therefore,

$$\begin{aligned} \mathop {\sigma _\varepsilon ^2 }\limits ^\wedge= & {} \frac{1}{n}\mathop {\sum }\limits _{j=1}^n {\left( E_j^*(P,Q)+\mathop {\sum }\limits _{k\in P'} {\alpha _k^*X_{kj}} -\mathop {\sum }\limits _{r\in Q'} {\beta _r^*Y_{rj} } \right) ^2 } \\= & {} \mathop {{\sigma }_\varepsilon ^{'2} }\limits ^\wedge =\frac{1}{n}\mathop {\sum }\limits _{j=1}^n {\left( E_j^*(P/{\{X_i\},Q})+\mathop {\sum }\limits _{k\in {P'}/\{i\}} {{\alpha }_k^{'*} X_{kj}} -\mathop {\sum }\limits _{r\in Q'} {{\beta }_r^{'*} Y_{rj} } \right) ^2 } \end{aligned}$$

Then, \(\ln [{ MLE}(P/{\{X_i \}},Q)]=\ln [{ MLE}(P,Q)]\), according to the definition of AIC value,

$$\begin{aligned} { AIC}(P,Q)-{ AIC}(P/{\{X_i \}},Q)= & {} \{-2\ln [{ MLE}(P,Q)]+2(| P |+| Q |)\}\\&\quad -\{-2\ln [{ MLE}(P/{\{X_i\}},Q)]+2(\left| {P/{\{X_i \}}} \right| +\left| Q \right| )\} \\= & {} 2\left| P \right| -2\left| {P/{\{X_i \}}} \right| =2. \end{aligned}$$

\(\square \)

Appendix 4

Proof of Theorem 3

Firstly, we denote the optimal solution to the model (1) based upon \(M=P,S=Q\) as (\(\mu _r^*,\upsilon _i^*,\forall r,i;)\). According to Corollary 1 of Theorem 1 in Lee and Choi (2009), we obtain that \(E_j^*(P,Q/{\{Y_i\}})=E_j^*(P,Q),\forall j\in N\). Similar to proof in theorem 1, since \(Y_i =\mathop {\sum }\nolimits _{r\in {Q'}/{\{i\}}} {\lambda _r} Y_r -\mathop {\sum }\nolimits _{k\in P'} {\lambda _k} X_k ,\forall j\) and we set \({\beta }'_r =\beta _r^*+\lambda _r *\beta _i^*, \quad {\alpha }'_k =\alpha _k^*+\lambda _k *\beta _i^*\). So, to each \(DMU_j\),

$$\begin{aligned} \mathop {\sum }\limits _{r\in Q'/\{i\}} {\beta _r' y_{rj} } -\mathop {\sum }\limits _{k\in P'} {\alpha _k' x_{kj} }= & {} \mathop {\sum }\limits _{r\in Q'/\{i\}} {(\beta _r^*+\lambda _r *\beta _i^*)y_{rj} } -\mathop {\sum }\limits _{k\in P'} {(\alpha _k^*+\lambda _k *\beta _i^*)x_{kj} } \\= & {} \mathop {\sum }\limits _{r\in Q'/\{i\}} {\beta _r^*y_{rj} } +\beta _i^**\mathop {\sum }\limits _{r\in Q'/\{i\}} {\lambda _r y_{rj} } -\beta _i^**\mathop {\sum }\limits _{k\in P'} {\lambda _k x_{kj} } -\mathop {\sum }\limits _{k\in P'} {\alpha _k^*x_{kj} } \\= & {} \mathop {\sum }\limits _{r\in Q'/\{i\}} {\beta _r^*y_{rj} } +\beta _i^**\left( \mathop {\sum }\limits _{r\in Q'/\{i\}} {\lambda _r y_{rj} } -\mathop {\sum }\limits _{k\in P'} {\lambda _k x_{kj} } \right) -\mathop {\sum }\limits _{k\in P'} {\alpha _k^*x_{kj} } \\= & {} \mathop {\sum }\limits _{r\in Q'/\{i\}} {\beta _r^*y_{rj} } +\beta _i^**y_{ij} -\mathop {\sum }\limits _{k\in P'} {\alpha _k^*x_{kj} } \\= & {} \mathop {\sum }\limits _{r\in Q'} {\beta _r^*y_{rj} } -\mathop {\sum }\limits _{k\in P'} {\alpha _k^*x_{kj} } \end{aligned}$$

Then, (\({\beta }'_r ,{\alpha }'_k)\) is the optimal solution of model (19) with considering input data set P and output data set \(Q/\{Y_i\}\). So \(\beta _r' ={\beta }_r^{'*} ,{\alpha }'_i ={\alpha }_i^{'*}\), and we get \(\mathop {\sum }\nolimits _{r\in Q'/\{i\}} {{\beta }_r^{'*} y_{rj} } -\mathop {\sum }\nolimits _{k\in P'} {{\alpha }_k^{'*} x_{kj} } =\mathop {\sum }\nolimits _{r\in Q'} {\beta _r^*y_{rj} } -\mathop {\sum }\nolimits _{k\in P'} {\alpha _k^*x_{kj} } \). Therefore,

$$\begin{aligned} \mathop {\sigma _\varepsilon ^2 }\limits ^\wedge= & {} \frac{1}{n}\mathop {\sum }\limits _{j=1}^n {\left( E_j^*(P,Q)+\mathop {\sum }\limits _{k\in P'} {\alpha _k^*X_{kj}} -\mathop {\sum }\limits _{r\in Q'} {\beta _r^*Y_{rj}}\right) ^2 } \nonumber \\= & {} \mathop {{\sigma }_\varepsilon ^{'2} }\limits ^\wedge =\frac{1}{n}\mathop {\sum }\limits _{j=1}^n {\left( E_j^*(P,Q/{\{Y_i\}})+\mathop {\sum }\limits _{k\in P'} {{\alpha }_k^{'*} X_{kj}} -\mathop {\sum }\limits _{r\in {Q'}/{\{i\}}} {{\beta }_r^{'*} Y_{rj} } \right) ^2 } \end{aligned}$$
(29)

Then, \(\ln [{ MLE}(P,Q/{\{Y_i\}})]=\ln [{ MLE}(P,Q)]\), according to the definition of AIC value,

$$\begin{aligned}&{ AIC}(P,Q)-{ AIC}({P,Q}/{\{Y_i\}}) \\&\quad =\{-2\ln [{ MLE}(P,Q)]+2(\left| P \right| +\left| Q \right| )\}\\&\quad -\{-2\ln [{ MLE}(P,Q/{\{Y_i\}})]+2(\left| P \right| +\left| {Q/{\{Y_i\}}} \right| )\} \\&\quad =2\left| Q \right| -2\left| {Q/{\{Y_i\}}} \right| =2. \end{aligned}$$

\(\square \)

Appendix 5

$$\begin{aligned} {\tilde{\theta }}_j^d =\mathop {\sum }\limits _{r\in {Q}'} {\beta _r^d {\tilde{Y}}_{rj}^d } -\mathop {\sum }\limits _{i\in {P}'} {\alpha _i^d {\tilde{X}}_{ij}^d } +\varepsilon _j^d ,j\in n \\ \alpha _i^d ,\beta _r^d \ge 0,\forall i\in {P}',r\in {Q}' \end{aligned}$$

We show how to calculate the maximum likelihood estimate (\(\mathop {{ MLE}}\nolimits _d )\) in model (12). From model (2), we obtain a probability density function

$$\begin{aligned}&f\left( \theta _j^d +\mathop {\sum }\limits _{i\in {P}'} {\alpha _i X_{ij}^d } -\mathop {\sum }\limits _{r\in {Q}'} {\beta _r Y_{rj}^d } \left. \right| \alpha _i ,\beta _r \right) \nonumber \\&\quad =\frac{1}{\sqrt{2\pi }\sigma _\varepsilon }\exp \left\{ -\frac{\left( \theta _j^d +\mathop {\sum }\nolimits _{i\in {P}'} {\alpha _i X_{ij}^d } -\mathop {\sum }\nolimits _{r\in {Q}'} {\beta _r Y_{rj}^d } \right) ^2 }{2\sigma _\varepsilon ^2 }\right\} \end{aligned}$$
(30)

So, the (\(\mathop {{ MLE}}\limits _d )\) was obtained through following system of equations

$$\begin{aligned} \mathop {{ MLE}}\limits _d (P,Q)= & {} \prod _{j=1}^n f\left( \theta _j^d +\mathop {\sum }\limits _{i\in {P}'} {\alpha _i X_{ij}^d } -\mathop {\sum }\limits _{r\in {Q}'} {\beta _r Y_{rj}^d } \left. \right| \alpha _i ,\beta _r\right) \nonumber \\= & {} \prod _{j=1}^n \frac{1}{\sqrt{2\pi }\sigma _\varepsilon }\exp \left\{ -\frac{\left( \theta _j^d +\mathop {\sum }\nolimits _{i\in {P}'} {\alpha _i X_{ij}^d } -\mathop {\sum }\nolimits _{r\in {Q}'} {\beta _r Y_{rj}^d } \right) ^2 }{2\sigma _\varepsilon ^2 }\right\} \nonumber \\= & {} \left( \frac{1}{\sqrt{2\pi }}\right) ^{n} (\sigma _\varepsilon ^d )^{-n} \exp \left\{ -\frac{\mathop {\sum }\nolimits _{j=1}^n {\left( \theta _j^d +\mathop {\sum }\nolimits _{i\in {P}'} {\alpha _i X_{ij}^d } -\mathop {\sum }\nolimits _{r\in {Q}'}{\beta _r Y_{rj}^d } \right) ^2 } }{2\sigma _\varepsilon ^2 }\right\} \nonumber \\ \end{aligned}$$
(31)

Then, the natural logarithmic transformation of (\(\mathop {{ MLE}}\limits _d )\) is as follows

$$\begin{aligned} \ln [\mathop {{ MLE}}\limits _d (P,Q)]=-n\ln \left( \sqrt{2\pi }\right) -n\ln \sigma _\varepsilon ^d -\frac{1}{2\sigma _\varepsilon ^2 }\mathop {\sum }\limits _{j=1}^n {\left( \theta _j^d +\mathop {\sum }\limits _{i\in {P}'} {\alpha _i X_{ij}^d } -\mathop {\sum }\limits _{r\in {Q}'} {\beta _r Y_{rj}^d } \right) ^2 }\nonumber \\ \end{aligned}$$
(32)

\(\ln [\mathop {{ MLE}}\limits _d (P,Q)]\) can be maximized by setting the first derivative with respect to \(\sigma _\varepsilon ^d \), equal to zero and solving the resulting equation for \(\sigma _\varepsilon ^d \). So we have

$$\begin{aligned} \frac{\partial \ln [\mathop {{ MLE}}\limits _d (P,Q)]}{\partial \sigma _\varepsilon ^d }= & {} -n(\sigma _\varepsilon ^d )^{-1} +(\sigma _\varepsilon ^d )^{-3} \nonumber \\&\quad \mathop {\sum }\limits _{j=1}^n{\left( \theta _j^d +\mathop {\sum }\limits _{i\in {P}'} {\alpha _i X_{ij}^d } -\mathop {\sum }\limits _{r\in {Q}'}{\beta _r Y_{rj}^d } \right) ^2 } =0 \end{aligned}$$
(33)

and

$$\begin{aligned} \mathop {(\sigma _\varepsilon ^d }\limits ^\wedge )^2 =\frac{1}{n}\mathop {\sum }\limits _{j=1}^n {\left( \theta _j^d +\mathop {\sum }\limits _{i\in {P}'} {\alpha _i X_{ij}^d } -\mathop {\sum }\limits _{r\in {Q}'}{\beta _r Y_{rj}^d } \right) ^2 } \end{aligned}$$
(34)

Then, the remaining question is how to solve following model

$$\begin{aligned}&\mathop {\min }\limits _{\alpha _i ,\beta _r } \mathop {\sum }\limits _{j=1}^n {\left( \theta _j^d +\mathop {\sum }\limits _{i\in {P}'}{\alpha _i X_{ij}^d } -\mathop {\sum }\limits _{r\in {Q}'} {\beta _r Y_{rj}^d } \right) ^2 } \text {s.t.}\nonumber \\&\quad \alpha _i ,\beta _r \ge 0,\forall i\in {P}',r\in {Q}' \end{aligned}$$
(35)

where the constraints of model (35) are from model (2). Suppose the optimal solution to model (11) is (\(\alpha _i^*,\beta _r^*,\forall i\in P,r\in Q)\). So, based upon (34), we have

$$\begin{aligned} \mathop {(\sigma _\varepsilon ^d }\limits ^\wedge )^2= & {} \frac{1}{n}\mathop {\sum }\limits _{j=1}^n {\left( \theta _j^d +\mathop {\sum }\limits _{i\in {P}'} {\alpha _i^*X_{ij}^d } -\mathop {\sum }\limits _{r\in {Q}'}{\beta _r^*Y_{rj}^d } \right) ^2 } \end{aligned}$$
(36)

and the minimum of AIC estimator is

$$\begin{aligned} \mathop {Min}\limits _ {\begin{array}{c} \tilde{X}_i ,i \in P\\ {\tilde{Y}}_r ,r \in Q \end{array}} \mathop {Min}\limits _{P,Q} { AIC}(P,Q)= & {} \mathop {Min}\limits _{P,Q} \frac{1}{N}\mathop {\sum }\limits _{d=1}^N {\mathop {Min}\limits _{\begin{array}{c} X_i^d ,i \in P\\ Y_r^d ,r\in Q \end{array}}\mathop {{ AIC}}\limits _d (P,Q)}\nonumber \\= & {} \frac{1}{N}\mathop {\sum }\limits _{d=1}^N {n\left[ \ln (2\pi )+\ln (\mathop {\sigma _\varepsilon ^d }\limits ^\wedge )^2 +1\right] +2(|P|+| Q |)} \end{aligned}$$
(37)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Shi, X., Yang, M. et al. Variable selection in data envelopment analysis via Akaike’s information criteria. Ann Oper Res 253, 453–476 (2017). https://doi.org/10.1007/s10479-016-2382-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-016-2382-2

Keywords