Abstract
The complexity of reality can be better represented by models able to involve uncertainty and time patterns. We present a general formulation of a stochastic dynamic multiobjective optimization model and we provide different solution concepts based on its transformation into different deterministic equivalent models. We provide two applications to sustainable decision making in portfolio management and optimal workforce allocation.
Similar content being viewed by others
References
Abo-Sinna, M. A., & Hussein, M. L. (1993). Decomposition of multiobjective programming problems by hybrid fuzzy dynamic programming. Fuzzy Sets and Systems, 60, 25–32.
Abo-Sinna, M. A., & Hussein, M. L. (1995). An algorithm for generating efficient solutions of multiobjective dynamic programming problems. European Journal of Operational Research, 80, 156–165.
Anita, S., Arnautu, V., & Capasso, V. (2011). An introduction to optimal control problems in life sciences and economics: From mathematical models to numerical simulation with MATLAB. Basel: Birkhauser.
Athans, M., & Falb, P. L. (2006). Optimal control: An introduction to the theory and its applications. New York: Dover Publications.
Bellman, R. E. (1957). Dynamic programming. Princeton, NJ: Princeton University Press. Republished 2003: Dover. ISBN 0-486-42809-5.
Ben Abdelaziz, F. (2012). Solution approaches for the multiobjective stochastic programming. European Journal of Operational Research, 216(1), 1–16.
Ben Abdelaziz, F., Lang, P., & Nadeau, R. (1994). Pointwise efficiency in multiobjective stochastic linear programming. Journal of the Operational Research Society, 45(11), 1324–1334.
Ben Abdelaziz, F., Lang, P., & Nadeau, R. (1999). Dominance and efficiency in multiobjective decision under uncertainty. Theory and Decision, 47(3), 191–211.
Berkovitz, L., & Medhin, N. (2012). Nonlinear optimal control theory. London, Boca Raton: Chapman & Hall, CRC Press.
Bryson, A. E., & Ho, Y. C. (1975). Applied optimal control. New York: Hemispheres.
Caballero, R., Cerd, E., Munoz, M. M., & Rey, L. (2004). Stochastic approach versus multiobjective approach for obtaining efficient solutions in stochastic multiobjective programming problems. European Journal of Operational Research, 158(3), 633–648.
Caballero, R., Cerd, E., Munoz, M. M., Rey, L., & Stancu-Minasian, I. M. (2001). Efficient solution concepts and their relations in stochastic multiobjective programming. Journal of Optimization Theory and Applications, 110(1), 53–74.
Chankong, V., Haimes, Y. Y., & Gemperline, D. M. (1981). A multiobjective dynamic programming method for capacity expansion. IEEE Transactions on Automatic Control, 26(5), 1195–1207.
Charnes, A., & Cooper, W. W. (1952). Chance constraints and normal deviates. Journal of the American Statistical Association, 57, 134–148.
Chen, P., & Islam, S. M. N. (2005). Optimal control models in finance: A new computation approach. New York: Springer.
Chinchuluun, A., Pardalos, P. M., Enkhbat, R., & Tseveendori, I. (2010). Optimization and optimal control: Theory and applications. New York: Springer.
Fliege, J., & Xu, H. (2011). Stochastic multiobjective optimization: sample average approximation and applications. Journal of Optimization Theory and Applications, 151(1), 135–162.
Fowler, S. J., & Hope, C. (2007). A critical review of sustainable business indices and their impact. Journal of Business Ethics, 76(3), 243–252.
Geering, H. P. (2007). Optimal control with engineering applications. New York: Springer.
Gelfand, I. M., & Fomin, S. V. (2000). Calculus of variations. New York: Dover Publications Inc.
Ginchev, I., Torre, La, D., & Rocca M. (2012). Optimality criteria for multi-objective dynamic optimization programs: The vector-valued Ramsey model in Banach spaces. In S. Akashi, D.S. Kim, T.H. Kim, G.M. Lee, W. Takahashi, T. Tanaka (Eds.), Nonlinear analysis and convex analysis (pp. 53–73), Korea.
Jayaraman, R., Colapinto, C., La Torre, D., & Malik, T. (2015). Multi-criteria model for sustainable development using goal programming applied to the United Arab Emirates. Energy Policy, 87, 447–454.
Jayaraman, R., Colapinto, C., La Torre, D., & Malik, T. (2017). A Weighted Goal Programming model for planning sustainable development applied to Gulf Cooperation Council Countries. Applied Energy, 185, 1931–1939.
Kall, P., & Wallace, S. W. (1994). Stochastic programming. New York: Wiley.
Khanh, P. Q., & Nuong, T. H. (1988). On necessary optimality conditions in vector optimization problems. Journal of Optimization Theory and Applications, 58(1), 63–81.
Khanh, P. Q., & Nuong, T. H. (1989). On necessary and sufficient conditions in vector optimization. Journal of Optimization Theory and Applications, 63(3), 391–413.
Klotzler, R. (1978). Multiobjective dynamic programming. Mathematics Operations Horsch Statistics Series Optimization, 9(3), 423–426.
Krichen, S., & Ben Abdelaziz, F. (2007). An optimal stopping problem with two decision makers. Sequential Analysis, 26(467), 480.
Lai, Y. J., & Hwang, C. L. (1992). Fuzzy mathematical programming, methods and applications. New York: Springer.
Larbani, M., & Aouni, B. (2011). A new approach for generating efficient solutions within the goal programming model. Journal of the Operational Research Society, 62(1), 175–182.
Lenhart, S., & Workman, J. T. (2007). Optimal control applied to biological models, mathematical and computational biology. Boca Raton, London: Chapman & Hall, CRC Press.
Liberzon, D. (2012). Calculus of variations and optimal control theory: A concise introduction. Princeton, NJ: Princeton University Press.
Marsiglio, S., & La Torre, D. (2016). Economic growth and abatement activities in a stochastic environment: A multi-objective approach. Annals of Operations Research. https://doi.org/10.1007/s10479-016-2357-3.
Molchanov, I. (2005). Theory of random sets. London: Springer.
Munoz, M. M., & Ben Abdelaziz, F. (2012). Satisfactory solution concepts and their relations for stochastic multiobjective programming problems. European Journal of Operational Research, 220(2), 430–442.
Sawaragi, Y., Nakayama, N., & Tanino, T. T. (1985). Theory of multiobjective optimization. Cambridge: Academic Press.
Schattler, H., & Ledzewicz, U. (2012). Geometric optimal control: Theory, methods and examples. New York: Springer.
Seierstad, A., & Sydsaeter, K. (1987). Optimal control theory with economic applications. Amsterdam: North-Holland.
Stancu-Minasian, I., & Tigan, S. (1984). The vectorial minimum risk problem. In Proceedings of the colloquium on approximation and optimization, Cluj-Napoca (pp. 321–328).
Taxue, G. W., Inman, R. R., & Mades, D. M. (1979). Multiobjective dynamic programming with application to a reservoir. Water Resources Research, 15(6), 1403–1408.
Trenado, M., Romero, M., Cuadrado, M. L., & Romero, C. (2014). Corporate social responsibility in portfolio selection: A “goal games” against nature approach. Computers and Industrial Engineering, 75(1), 260–265.
Vinter, R. (2010). Optimal control. Basel: Birkhauser.
Wei, Q., Zhang, H., & Dai, J. (2009). Model-free multiobjective approximate dynamic programming for discrete-time nonlinear systems with general performance index functions. Neurocomputing, 72, 1839–1848.
White, D. J. (1982). Optimality and efficiency. Chichester: Wiley.
Zohrevand, A. M., Rafiei, H., & Zohrevand, A. H. (2016). Multi-objective dynamic cell formation problem: A stochastic programming approach. Computers and Industrial Engineering. https://doi.org/10.1016/j.cie.2016.03.026.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ben Abdelaziz, F., Colapinto, C., La Torre, D. et al. A stochastic dynamic multiobjective model for sustainable decision making. Ann Oper Res 293, 539–556 (2020). https://doi.org/10.1007/s10479-018-2897-9
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10479-018-2897-9