Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A stochastic dynamic multiobjective model for sustainable decision making

  • S.I.: MCDM 2017
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The complexity of reality can be better represented by models able to involve uncertainty and time patterns. We present a general formulation of a stochastic dynamic multiobjective optimization model and we provide different solution concepts based on its transformation into different deterministic equivalent models. We provide two applications to sustainable decision making in portfolio management and optimal workforce allocation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abo-Sinna, M. A., & Hussein, M. L. (1993). Decomposition of multiobjective programming problems by hybrid fuzzy dynamic programming. Fuzzy Sets and Systems, 60, 25–32.

    Article  Google Scholar 

  • Abo-Sinna, M. A., & Hussein, M. L. (1995). An algorithm for generating efficient solutions of multiobjective dynamic programming problems. European Journal of Operational Research, 80, 156–165.

    Article  Google Scholar 

  • Anita, S., Arnautu, V., & Capasso, V. (2011). An introduction to optimal control problems in life sciences and economics: From mathematical models to numerical simulation with MATLAB. Basel: Birkhauser.

    Book  Google Scholar 

  • Athans, M., & Falb, P. L. (2006). Optimal control: An introduction to the theory and its applications. New York: Dover Publications.

    Google Scholar 

  • Bellman, R. E. (1957). Dynamic programming. Princeton, NJ: Princeton University Press. Republished 2003: Dover. ISBN 0-486-42809-5.

  • Ben Abdelaziz, F. (2012). Solution approaches for the multiobjective stochastic programming. European Journal of Operational Research, 216(1), 1–16.

    Article  Google Scholar 

  • Ben Abdelaziz, F., Lang, P., & Nadeau, R. (1994). Pointwise efficiency in multiobjective stochastic linear programming. Journal of the Operational Research Society, 45(11), 1324–1334.

    Article  Google Scholar 

  • Ben Abdelaziz, F., Lang, P., & Nadeau, R. (1999). Dominance and efficiency in multiobjective decision under uncertainty. Theory and Decision, 47(3), 191–211.

    Article  Google Scholar 

  • Berkovitz, L., & Medhin, N. (2012). Nonlinear optimal control theory. London, Boca Raton: Chapman & Hall, CRC Press.

    Book  Google Scholar 

  • Bryson, A. E., & Ho, Y. C. (1975). Applied optimal control. New York: Hemispheres.

    Google Scholar 

  • Caballero, R., Cerd, E., Munoz, M. M., & Rey, L. (2004). Stochastic approach versus multiobjective approach for obtaining efficient solutions in stochastic multiobjective programming problems. European Journal of Operational Research, 158(3), 633–648.

    Article  Google Scholar 

  • Caballero, R., Cerd, E., Munoz, M. M., Rey, L., & Stancu-Minasian, I. M. (2001). Efficient solution concepts and their relations in stochastic multiobjective programming. Journal of Optimization Theory and Applications, 110(1), 53–74.

    Article  Google Scholar 

  • Chankong, V., Haimes, Y. Y., & Gemperline, D. M. (1981). A multiobjective dynamic programming method for capacity expansion. IEEE Transactions on Automatic Control, 26(5), 1195–1207.

    Article  Google Scholar 

  • Charnes, A., & Cooper, W. W. (1952). Chance constraints and normal deviates. Journal of the American Statistical Association, 57, 134–148.

    Article  Google Scholar 

  • Chen, P., & Islam, S. M. N. (2005). Optimal control models in finance: A new computation approach. New York: Springer.

    Google Scholar 

  • Chinchuluun, A., Pardalos, P. M., Enkhbat, R., & Tseveendori, I. (2010). Optimization and optimal control: Theory and applications. New York: Springer.

    Book  Google Scholar 

  • Fliege, J., & Xu, H. (2011). Stochastic multiobjective optimization: sample average approximation and applications. Journal of Optimization Theory and Applications, 151(1), 135–162.

    Article  Google Scholar 

  • Fowler, S. J., & Hope, C. (2007). A critical review of sustainable business indices and their impact. Journal of Business Ethics, 76(3), 243–252.

    Article  Google Scholar 

  • Geering, H. P. (2007). Optimal control with engineering applications. New York: Springer.

    Google Scholar 

  • Gelfand, I. M., & Fomin, S. V. (2000). Calculus of variations. New York: Dover Publications Inc.

    Google Scholar 

  • Ginchev, I., Torre, La, D., & Rocca M. (2012). Optimality criteria for multi-objective dynamic optimization programs: The vector-valued Ramsey model in Banach spaces. In S. Akashi, D.S. Kim, T.H. Kim, G.M. Lee, W. Takahashi, T. Tanaka (Eds.), Nonlinear analysis and convex analysis (pp. 53–73), Korea.

  • Jayaraman, R., Colapinto, C., La Torre, D., & Malik, T. (2015). Multi-criteria model for sustainable development using goal programming applied to the United Arab Emirates. Energy Policy, 87, 447–454.

    Article  Google Scholar 

  • Jayaraman, R., Colapinto, C., La Torre, D., & Malik, T. (2017). A Weighted Goal Programming model for planning sustainable development applied to Gulf Cooperation Council Countries. Applied Energy, 185, 1931–1939.

    Article  Google Scholar 

  • Kall, P., & Wallace, S. W. (1994). Stochastic programming. New York: Wiley.

    Google Scholar 

  • Khanh, P. Q., & Nuong, T. H. (1988). On necessary optimality conditions in vector optimization problems. Journal of Optimization Theory and Applications, 58(1), 63–81.

    Article  Google Scholar 

  • Khanh, P. Q., & Nuong, T. H. (1989). On necessary and sufficient conditions in vector optimization. Journal of Optimization Theory and Applications, 63(3), 391–413.

    Article  Google Scholar 

  • Klotzler, R. (1978). Multiobjective dynamic programming. Mathematics Operations Horsch Statistics Series Optimization, 9(3), 423–426.

    Article  Google Scholar 

  • Krichen, S., & Ben Abdelaziz, F. (2007). An optimal stopping problem with two decision makers. Sequential Analysis, 26(467), 480.

    Google Scholar 

  • Lai, Y. J., & Hwang, C. L. (1992). Fuzzy mathematical programming, methods and applications. New York: Springer.

    Book  Google Scholar 

  • Larbani, M., & Aouni, B. (2011). A new approach for generating efficient solutions within the goal programming model. Journal of the Operational Research Society, 62(1), 175–182.

    Article  Google Scholar 

  • Lenhart, S., & Workman, J. T. (2007). Optimal control applied to biological models, mathematical and computational biology. Boca Raton, London: Chapman & Hall, CRC Press.

    Book  Google Scholar 

  • Liberzon, D. (2012). Calculus of variations and optimal control theory: A concise introduction. Princeton, NJ: Princeton University Press.

    Book  Google Scholar 

  • Marsiglio, S., & La Torre, D. (2016). Economic growth and abatement activities in a stochastic environment: A multi-objective approach. Annals of Operations Research. https://doi.org/10.1007/s10479-016-2357-3.

  • Molchanov, I. (2005). Theory of random sets. London: Springer.

    Google Scholar 

  • Munoz, M. M., & Ben Abdelaziz, F. (2012). Satisfactory solution concepts and their relations for stochastic multiobjective programming problems. European Journal of Operational Research, 220(2), 430–442.

    Article  Google Scholar 

  • Sawaragi, Y., Nakayama, N., & Tanino, T. T. (1985). Theory of multiobjective optimization. Cambridge: Academic Press.

    Google Scholar 

  • Schattler, H., & Ledzewicz, U. (2012). Geometric optimal control: Theory, methods and examples. New York: Springer.

    Book  Google Scholar 

  • Seierstad, A., & Sydsaeter, K. (1987). Optimal control theory with economic applications. Amsterdam: North-Holland.

    Google Scholar 

  • Stancu-Minasian, I., & Tigan, S. (1984). The vectorial minimum risk problem. In Proceedings of the colloquium on approximation and optimization, Cluj-Napoca (pp. 321–328).

  • Taxue, G. W., Inman, R. R., & Mades, D. M. (1979). Multiobjective dynamic programming with application to a reservoir. Water Resources Research, 15(6), 1403–1408.

    Article  Google Scholar 

  • Trenado, M., Romero, M., Cuadrado, M. L., & Romero, C. (2014). Corporate social responsibility in portfolio selection: A “goal games” against nature approach. Computers and Industrial Engineering, 75(1), 260–265.

    Article  Google Scholar 

  • Vinter, R. (2010). Optimal control. Basel: Birkhauser.

    Book  Google Scholar 

  • Wei, Q., Zhang, H., & Dai, J. (2009). Model-free multiobjective approximate dynamic programming for discrete-time nonlinear systems with general performance index functions. Neurocomputing, 72, 1839–1848.

    Article  Google Scholar 

  • White, D. J. (1982). Optimality and efficiency. Chichester: Wiley.

    Google Scholar 

  • Zohrevand, A. M., Rafiei, H., & Zohrevand, A. H. (2016). Multi-objective dynamic cell formation problem: A stochastic programming approach. Computers and Industrial Engineering. https://doi.org/10.1016/j.cie.2016.03.026.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fouad Ben Abdelaziz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Abdelaziz, F., Colapinto, C., La Torre, D. et al. A stochastic dynamic multiobjective model for sustainable decision making. Ann Oper Res 293, 539–556 (2020). https://doi.org/10.1007/s10479-018-2897-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-018-2897-9

Keywords