Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Efficient computation of the Shapley value for large-scale linear production games

  • S.I.: Game theory and optimization
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The linear production game is concerned with allocating the total payoff of an enterprise among the owners of the resources in a fair way. With cooperative game theory providing a mathematical framework for sharing the benefit of the cooperation, the Shapley value is one of the widely used solution concepts as a fair measurement in this area. Finding the exact Shapley value for linear production games is, however, challenging when the number of players exceeds 30. This paper describes the use of linear programming sensitivity analysis for a more efficient computation of the Shapley value. The paper also proposes a stratified sampling technique to estimate the Shapley value for large-scale linear production games. Computational results show the effectiveness of the proposed methods compared to others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ando, K. (2012). Computation of the Shapley value of minimum cost spanning tree games: #P-hardness and polynomial cases. Japan Journal of Industrial and Applied Mathematics, 29, 385–400.

    Article  Google Scholar 

  • Bertsimas, D., & Tsitsiklis, J. N. (1997). Introduction to linear optimization. Belmont, MA: Athena Scientific.

    Google Scholar 

  • Bilbao, J. M., Fernandez, J. R., Losada, A. J., & Lopez, J. J. (2000). Generating functions for computing power indices efficiently. Top, 8(2), 191–213.

    Article  Google Scholar 

  • Bjorndal, E., & Jornsten, K. (2009). Lower and upper bounds for linear production games. European Journal of Operational Research. Production, Manufacturing and Logistics, 196(2), 476–486.

    Google Scholar 

  • Borm, P., Hamers, H., & Hendrickx, R. (2001). Operations research games: A survey. TOP, 9(2), 139–216.

    Article  Google Scholar 

  • Castro, J., Gómez, D., Monila, E., & Tejada, J. (2017). Improving polynomial estimation of the Shapley value by stratified random sampling with optimum allocation. Computers and Operations Research, 82, 180–188.

    Article  Google Scholar 

  • Castro, J., Gómez, D., & Tejada, J. (2009). Polynomial calculation of the Shapley value based on sampling. Computers and Operations Research, 36(5), 1726–1730.

    Article  Google Scholar 

  • Cochran, W. G. (2007). Sampling Techniques (3 Wiley Student Edition ed.). Hoboken: Wiley.

    Google Scholar 

  • Deng, X., & Papadimitriou, C. H. (1994). On the complexity of cooperative solution concepts. Mathematics of Operations Research, 19(2), 257–266.

    Article  Google Scholar 

  • Fernández, F. R., Fiestras-Janeiro, M. G., Garca-Jurado, I., & Puerto, J. (2005). Competition and cooperation in non-centralized linear production games. Annals of Operations Research, 137(1), 91–100.

    Article  Google Scholar 

  • Gómez, D., González-Arangüena, E., Manuel, C., Owen, G., Pozo, M., & Tejada, J. (2003). Centrality and power in social networks: A game theoretic approach. Mathematical Social Sciences, 46(1), 27–54.

    Article  Google Scholar 

  • Granot, D. (1986). A generalized linear production model: A unifying model. Mathematical Programming, 34, 212–222.

    Article  Google Scholar 

  • Granot, D., & Huberman, G. (1981). Minimum cost spanning tree games. Mathematical Programming, 21, 1–18.

    Article  Google Scholar 

  • Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association, 58(301), 13–30.

    Article  Google Scholar 

  • Lozano, S. (2013). DEA production games. European Journal of Operational Research, 231(2), 405–413.

    Article  Google Scholar 

  • Maleki, S., Tran, T. L., Hines, G., Rahwan, T., & Rogers, A. (2013). Bounding the estimation error of sampling-based shapley value approximation. In CoopMAS 2014, AAMAS 14.

  • Mann, I., & Shapley, L. S. (1960). Values for large games, IV: Evaluating the Electoral College by Monte Carlo Techniques. The Rand Corporation, technical report.

  • Michalak, T. P., Aadithya, K. V., Szczepanski, P. L., Ravindran, B., & Jennings, N. R. (2013). Efficient computation of the shapley value for game-theoretic network centrality. Journal of Artificial Intelligence Research, 46, 607–650.

    Article  Google Scholar 

  • Nishizaki, I., Hayashida, T., & Shintomi, Y. (2016). A core-allocation for a network restricted linear production game. Annals of Operations Research, 238(1), 389–410.

    Article  Google Scholar 

  • O’Brien, G., El Gamal, A., & Rajagopal, R. (2015). Shapley value estimation for compensation of participants in demand response programs. IEEE Transactions on Smart Grid, 6(6), 2837–2844.

    Article  Google Scholar 

  • Owen, G. (1975). On the core of linear production games. Mathematical Programming, 9, 358–370.

    Article  Google Scholar 

  • Shapley, L. S. (1953). A value for n-person games. Contributions to the theory of Games II (pp. 307–317). Princeton University Press.

  • Shapley, L. S., & Shubik, M. (1954). A method for evaluating the distribution of power in a committee system. American Political Science Review, 48, 787–792.

    Article  Google Scholar 

  • Shapley, L. S., & Shubik, M. (1971). The assignment game I: The core. International Journal of Game Theory, 1, 111–130.

    Article  Google Scholar 

  • Tamir, A. (1991). On the core of network synthesis games. Mathematical Programming, 50(1), 123–135.

    Article  Google Scholar 

  • Weber, R. J. (1988). Probabilistic values for games. In A. Roth (Ed.), The Shapley value: Essays in honor of Lloyd S. Shapley (pp. 101–119). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Wolsey, L. A., & Nemhauser, G. L. (1999). Integer and combinatorial optimization. Hoboken: Wiley.

    Google Scholar 

  • Young, H. P. (1985). Monotonic solutions of cooperative games. International Journal of Game Theory, 14(2), 65–72.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank two anonymous reviewers for their very constructive comments. The first author gratefully acknowledges the Faculty Scholarship provided by Southampton Business School.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tri-Dung Nguyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, P.H., Nguyen, TD. & Bektaş, T. Efficient computation of the Shapley value for large-scale linear production games. Ann Oper Res 287, 761–781 (2020). https://doi.org/10.1007/s10479-018-3047-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-018-3047-0

Keywords