Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Impact of commitment, information sharing, and information usage on supplier performance: a Bayesian belief network approach

  • S.I.: Data Mining and Decision Analytics
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Due to the proliferation of information systems and technology, supply chains have the capability of acquiring an enormous amount of supplier data in their databases. However, much of the useful supplier-specific insights in terms of supplier performance metrics are mostly hidden and untouched. The current emphasis on supplier performance makes relationship commitment and information management functions an ideal application area to benefit from the use of data-mining tools for the decision-making process and improving supplier performance. By employing Bayesian belief networks, this study investigates the role of the major variables of commitment, information sharing, quality of shared information, and information usage in relation to supplier performance in the U.S. aircraft manufacturing supply chain. The results provide insightful guidance to managers on how to enhance performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson, E., & Weitz, B. (1992). The use of pledges to build and sustain commitment in distribution channels. Journal of Marketing Research, 29(1), 18–34.

    Article  Google Scholar 

  • Anderson, J. R. (1986). Knowledge compilation: The general learning mechanism. Machine Learning: An Artificial Intelligence Approach, 2, 289–310.

    Google Scholar 

  • Aramyan, L. H., Lansink, A. O., Van der Vorst, J., & van Kooten, O. (2007). Performance measurement in agri-food supply chains: A case study. Supply Chain Management: An International Journal, 12(4), 304–315.

    Article  Google Scholar 

  • Armstrong, C. E., & Shimizu, K. (2007). A review of approaches to empirical research on the resource-based view of the firm. Journal of Management, 33(6), 959–986.

    Article  Google Scholar 

  • Barut, M., Faisst, W., & Kanet, J. J. (2002). Measuring supply chain coupling: An information system perspective. European Journal of Purchasing & Supply Management, 8(3), 161–171.

    Article  Google Scholar 

  • Beamon, B. M. (1999). Measuring supply chain performance. International Journal of Operations & Production Management, 19(3), 275–292.

    Article  Google Scholar 

  • Bourne, M., Mills, J., Wilcox, M., Neely, A., & Platts, K. (2000). Designing, implementing and updating performance measurement systems. International journal of Operations & Production Management, 20(7), 754–771.

    Article  Google Scholar 

  • Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees (p. 358). Monterey, CA: Wadsworth & Brooks/Cole Advanced Books & Software.

    Google Scholar 

  • Brown, J. R., Lusch, R. F., & Nicholson, C. Y. (1995). Power and relationship commitment: Their impact on marketing channel member performance. Journal of Retailing, 71(4), 363–392.

    Article  Google Scholar 

  • Cachon, G. P., & Lariviere, M. A. (2001). Contracting to assure supply: How to share demand forecasts in a supply chain. Management Science, 47(5), 629–646.

    Article  Google Scholar 

  • Carr, A. S., & Kaynak, H. (2007). Communication methods, information sharing, supplier development and performance: An empirical study of their relationships. International Journal of Operations & Production Management, 27(4), 346–370.

    Article  Google Scholar 

  • Chae, B. (2009). Developing key performance indicators for supply chain: An industry perspective. Supply Chain Management: An International Journal, 14(6), 422–428.

    Article  Google Scholar 

  • Chae, S., Choi, T. Y., & Hur, D. (2017). Buyer power and supplier relationship commitment: A cognitive evaluation theory perspective. Journal of Supply Chain Management, 53(2), 39–60.

    Article  Google Scholar 

  • Chan, F. T. (2003). Performance measurement in a supply chain. The International Journal of Advanced Manufacturing Technology, 21(7), 534–548.

    Article  Google Scholar 

  • Chan, F. T., & Qi, H. J. (2003). An innovative performance measurement method for supply chain management. Supply Chain Management: An International Journal, 8(3), 209–223.

    Article  Google Scholar 

  • Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. Computers & Electrical Engineering, 40(1), 16–28.

    Article  Google Scholar 

  • Chen, I. J., & Paulraj, A. (2004). Towards a theory of supply chain management: The constructs and measurements. Journal of Operations Management, 22(2), 119–150.

    Article  Google Scholar 

  • Chen, Y. S., Cheng, C. H., & Lai, C. J. (2012). Extracting performance rules of suppliers in the manufacturing industry: An empirical study. Journal of Intelligent Manufacturing, 23(5), 2037–2045.

    Article  Google Scholar 

  • Cheng, J. H. (2011). Inter-organizational relationships and information sharing in supply chains. International Journal of Information Management, 31(4), 374–384.

    Article  Google Scholar 

  • Chiu, C. M., Chiu, C. S., & Chang, H. C. (2007). Examining the integrated influence of fairness and quality on learners’ satisfaction and web-based learning continuance intention. Information Systems Journal, 17(3), 271–287.

    Article  Google Scholar 

  • Choudhary, A. K., Harding, J. A., & Tiwari, M. K. (2009). Data mining in manufacturing: A review based on the kind of knowledge. Journal of Intelligent Manufacturing, 20(5), 501.

    Article  Google Scholar 

  • Chow, C., & Liu, C. (1968). Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory, 14(3), 462–467.

    Article  Google Scholar 

  • Cooper, M. C., Lambert, D. M., & Pagh, J. D. (1997). Supply chain management: More than a new name for logistics. The International Journal of Logistics Management, 8(1), 1–14.

    Article  Google Scholar 

  • Cropanzano, R., & Mitchell, M. S. (2005). Social exchange theory: An interdisciplinary review. Journal of Management, 31(6), 874–900.

    Article  Google Scholar 

  • Croson, R., & Donohue, K. (2005). Upstream versus downstream information and its impact on the bullwhip effect. System Dynamics Review, 21(3), 249–260.

    Article  Google Scholar 

  • Danese, P., & Romano, P. (2013). The moderating role of supply network structure on the customer integration-efficiency relationship. International Journal of Operations & Production Management, 33(4), 372–393.

    Article  Google Scholar 

  • Das, S. (2001). Filters, wrappers and a boosting-based hybrid for feature selection. In ICML 01 proceedings of the eighteenth international conference on machine learning, June 28–July 1 (pp. 74–81). San Francisco, CA: Morgan Kaufmann Publishers Inc.

  • Daugherty, P. J., Richey, R. G., Roath, A. S., Min, S., Chen, H., Arndt, A. D., et al. (2006). Is collaboration paying off for firms? Business Horizons, 49(1), 61–70.

    Article  Google Scholar 

  • Demeter, K., Forslund, H., & Jonsson, P. (2007). The impact of forecast information quality on supply chain performance. International Journal of Operations and Production Management, 27(1), 90–107.

    Article  Google Scholar 

  • Ding, H., Guo, B., & Liu, Z. (2011). Information sharing and profit allotment based on supply chain cooperation. International Journal of Production Economics, 133(1), 70–79.

    Article  Google Scholar 

  • Ding, M. J., Jie, F., Parton, K. A., & Matanda, M. J. (2014). Relationships between quality of information sharing and supply chain food quality in the Australian beef processing industry. The International Journal of Logistics Management, 25(1), 85–108.

    Article  Google Scholar 

  • Dobson, G., & Pinker, E. J. (2006). The value of sharing lead time information. IIE Transactions, 38(3), 171–183.

    Article  Google Scholar 

  • Droge, C., Jayaram, J., & Vickery, S. K. (2004). The effects of internal versus external integration practices on time-based performance and overall firm performance. Journal of Operations Management, 22(6), 557–573.

    Article  Google Scholar 

  • Dubey, R., Altay, N., & Blome, C. (2017a). Swift trust and commitment: The missing links for humanitarian supply chain coordination? Annals of Operations Research, 283, 1–19.

    Article  Google Scholar 

  • Dubey, R., Gunasekaran, A., Childe, S. J., Papadopoulos, T., Luo, Z., & Roubaud, D. (2017b). Upstream supply chain visibility and complexity effect on focal company’s sustainable performance: Indian manufacturers’ perspective. Annals of Operations Research. https://doi.org/10.1007/s10479-017-2544-x.

    Article  Google Scholar 

  • Dubey, R., Gunasekaran, A., Childe, S. J., Roubaud, D., Wamba, S. F., Giannakis, M., et al. (2019). Big data analytics and organizational culture as complements to swift trust and collaborative performance in the humanitarian supply chain. International Journal of Production Economics, 210, 120–136.

    Article  Google Scholar 

  • Dyer, J. H., & Singh, H. (1998). The relational view: Cooperative strategy and sources of interorganizational competitive advantage. Academy of Management Review, 23(4), 660–679.

    Article  Google Scholar 

  • Eckerd, S., & Hill, J. A. (2012). The buyer–supplier social contract: Information sharing as a deterrent to unethical behaviors. International Journal of Operations & Production Management, 32(2), 238–255.

    Article  Google Scholar 

  • Ellinger, A. E., Chen, H., Tian, Y., & Armstrong, C. (2015). Learning orientation, integration, and supply chain risk management in Chinese manufacturing firms. International Journal of Logistics Research and Applications, 18(6), 476–493.

    Article  Google Scholar 

  • Fleisch, E., & Tellkamp, C. (2005). Inventory inaccuracy and supply chain performance: A simulation study of a retail supply chain. International Journal of Production Economics, 95(3), 373–385.

    Article  Google Scholar 

  • Fleuret, F. (2004). Fast binary feature selection with conditional mutual information. Journal of Machine Learning Research, 5(Nov), 1531–1555.

    Google Scholar 

  • Flynn, B. B., Huo, B., & Zhao, X. (2010). The impact of supply chain integration on performance: A contingency and configuration approach. Journal of Operations Management, 28(1), 58–71.

    Article  Google Scholar 

  • Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian network classifiers. Machine Learning, 29(2–3), 131–163.

    Article  Google Scholar 

  • Ganeshan, R., Boone, T., & Stenger, A. J. (2001). The impact of inventory and flow planning parameters on supply chain performance: An exploratory study. International Journal of Production Economics, 71(1–3), 111–118.

    Article  Google Scholar 

  • Garvey, M. D., Carnovale, S., & Yeniyurt, S. (2015). An analytical framework for supply network risk propagation: A Bayesian network approach. European Journal of Operational Research, 243(2), 618–627.

    Article  Google Scholar 

  • Gligor, D. M., & Holcomb, M. (2014). The road to supply chain agility: An RBV perspective on the role of logistics capabilities. The International Journal of Logistics Management, 25(1), 160–179.

    Article  Google Scholar 

  • Gorla, N., & Scavarda, A. (2012). The effect of IT service quality attributes on supply chain management and performance. World Academy of Science, Engineering and Technology, 6, 614–618.

    Google Scholar 

  • Griffith, D. A., Harvey, M. G., & Lusch, R. F. (2006). Social exchange in supply chain relationships: The resulting benefits of procedural and distributive justice. Journal of Operations Management, 24(2), 85–98.

    Article  Google Scholar 

  • Gunasekaran, A., & Kobu, B. (2007). Performance measures and metrics in logistics and supply chain management: A review of recent literature (1995–2004) for research and applications. International Journal of Production Research, 45(12), 2819–2840.

    Article  Google Scholar 

  • Gunasekaran, A., Patel, C., & McGaughey, R. E. (2004). A framework for supply chain performance measurement. International Journal of Production Economics, 87(3), 333–347.

    Article  Google Scholar 

  • Gunasekaran, A., Patel, C., & Tirtiroglu, E. (2001). Performance measures and metrics in a supply chain environment. International Journal of Operations & Production Management, 21(1/2), 71–87.

    Article  Google Scholar 

  • Hall, D. C., & Saygin, C. (2012). Impact of information sharing on supply chain performance. The International Journal of Advanced Manufacturing Technology, 58(1), 397–409.

    Article  Google Scholar 

  • Hariharan, R., & Zipkin, P. (1995). Customer-order information, leadtimes, and inventories. Management Science, 41(10), 1599–1607.

    Article  Google Scholar 

  • Hartono, E., Li, X., Na, K. S., & Simpson, J. T. (2010). The role of the quality of shared information in inter-organizational systems use. International Journal of Information Management, 30(5), 399–407.

    Article  Google Scholar 

  • Hashim, K. F., & Tan, F. B. (2015). The mediating role of trust and commitment on members’ continuous knowledge sharing intention: A commitment-trust theory perspective. International Journal of Information Management, 35(2), 145–151.

    Article  Google Scholar 

  • Hazen, B. T., Boone, C. A., Ezell, J. D., & Jones-Farmer, L. A. (2014). Data quality for data science, predictive analytics, and big data in supply chain management: An introduction to the problem and suggestions for research and applications. International Journal of Production Economics, 154, 72–80.

    Article  Google Scholar 

  • Hazen, B. T., Skipper, J. B., Ezell, J. D., & Boone, C. A. (2016). Big Data and predictive analytics for supply chain sustainability: A theory-driven research agenda. Computers & Industrial Engineering, 101, 592–598.

    Article  Google Scholar 

  • He, W., & Xu, L. D. (2014). Integration of distributed enterprise applications: A survey. IEEE Transactions on Industrial Informatics, 10(1), 35–42.

    Article  Google Scholar 

  • Hsu, C. C., Kannan, V. R., Tan, K. C., & Keong Leong, G. (2008). Information sharing, buyer-supplier relationships, and firm performance: A multi-region analysis. International Journal of Physical Distribution & Logistics Management, 38(4), 296–310.

    Article  Google Scholar 

  • Hunt, S. D. (1997). Competing through relationships: Grounding relationship marketing in resource-advantage theory. Journal of Marketing Management, 13(5), 431–445.

    Article  Google Scholar 

  • Hunt, S. D., & Morgan, R. M. (1994). Organizational commitment: One of many commitments or key mediating construct? Academy of Management Journal, 37(6), 1568–1587.

    Article  Google Scholar 

  • Huo, B. (2012). The impact of supply chain integration on company performance: An organizational capability perspective. Supply Chain Management: An International Journal, 17(6), 596–610.

    Article  Google Scholar 

  • Huo, B., Huo, B., Han, Z., Han, Z., Prajogo, D., & Prajogo, D. (2016). Antecedents and consequences of supply chain information integration: A resource-based view. Supply Chain Management: An International Journal, 21(6), 661–677.

    Article  Google Scholar 

  • Huo, B., Zhao, X., & Zhou, H. (2014). The effects of competitive environment on supply chain information sharing and performance: An empirical study in China. Production and Operations Management, 23(4), 552–569.

    Article  Google Scholar 

  • Hwang, Y., Kettinger, W. J., & Mun, Y. Y. (2013). A study on the motivational aspects of information management practice. International Journal of Information Management, 33(1), 177–184.

    Article  Google Scholar 

  • Ireland, R. D., & Webb, J. W. (2007). A multi-theoretic perspective on trust and power in strategic supply chains. Journal of Operations Management, 25(2), 482–497.

    Article  Google Scholar 

  • Jap, S. D., & Ganesan, S. (2000). Control mechanisms and the relationship life cycle: Implications for safeguarding specific investments and developing commitment. Journal of Marketing Research, 37(2), 227–245.

    Article  Google Scholar 

  • Johnson, M., & Templar, S. (2011). The relationships between supply chain and firm performance: The development and testing of a unified proxy. International Journal of Physical Distribution & Logistics Management, 41(2), 88–103.

    Article  Google Scholar 

  • Kache, F., & Seuring, S. (2017). Challenges and opportunities of digital information at the intersection of big data analytics and supply chain management. International Journal of Operations & Production Management, 37(1), 10–36.

    Article  Google Scholar 

  • Kale, P., Singh, H., & Raman, A. P. (2009). Don’t integrate your acquisitions, partner with them. Harvard Business Review, 87(12), 109–115.

    Google Scholar 

  • Kaplan, R. S., & Norton, D. P. (1997). Balanced scorecard: Strategien erfolgreich umsetzen. Stuttgart: Schäffer-Poeschel Verlag.

    Google Scholar 

  • Karaesmen, F., Liberopoulos, G., & Dallery, Y. (2004). The value of advance demand information in production/inventory systems. Annals of Operations Research, 126(1–4), 135–157.

    Article  Google Scholar 

  • Kaynak, H., & Carr, A. S. (2012). The role of information sharing and coordination in managing supply chain relationships. International Journal of Integrated Supply Management, 7(4), 246–271.

    Article  Google Scholar 

  • Kembro, J., & Näslund, D. (2014). Information sharing in supply chains, myth or reality? A critical analysis of empirical literature. International Journal of Physical Distribution & Logistics Management, 44(3), 179–200.

    Article  Google Scholar 

  • Kennerley, M., & Neely, A. (2002). A framework of the factors affecting the evolution of performance measurement systems. International Journal of Operations & Production Management, 22(11), 1222–1245.

    Article  Google Scholar 

  • Kim, S. W. (2009). An investigation on the direct and indirect effect of supply chain integration on firm performance. International Journal of Production Economics, 119(2), 328–346.

    Article  Google Scholar 

  • Koçoğlu, İ., İmamoğlu, S. Z., İnce, H., & Keskin, H. (2011). The effect of supply chain integration on information sharing: Enhancing the supply chain performance. Procedia-social and Behavioral Sciences, 24, 1630–1649.

    Article  Google Scholar 

  • Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. International Joint Conference on Artificial Intelligence, 14(2), 137–1145.

    Google Scholar 

  • Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97(1–2), 273–324.

    Article  Google Scholar 

  • Koller, D., & Friedman, N. (2009). Probabilistic graphical models: Principles and techniques. Cambridge, MA: MIT Press.

    Google Scholar 

  • Krause, D., Luzzini, D., & Lawson, B. (2018). Building the case for a single key informant in supply chain management survey research. Journal of Supply Chain Management, 54(1), 42–50.

    Article  Google Scholar 

  • Krause, D. R. (1999). The antecedents of buying firms’ efforts to improve suppliers. Journal of Operations Management, 17(2), 205–224.

    Article  Google Scholar 

  • Kull, T. J., Kotlar, J., & Spring, M. (2018). Small and medium enterprise research in supply chain management: The case for single-respondent research designs. Journal of Supply Chain Management, 54(1), 23–34.

    Article  Google Scholar 

  • Kulp, S. C., Lee, H. L., & Ofek, E. (2004). Manufacturer benefits from information integration with retail customers. Management Science, 50(4), 431–444.

    Article  Google Scholar 

  • Kwon, I. W. G., & Suh, T. (2005). Trust, commitment and relationships in supply chain management: A path analysis. Supply Chain Management: An International Journal, 10(1), 26–33.

    Article  Google Scholar 

  • Last, M., Danon, G., Biderman, S., & Miron, E. (2009). Optimizing a batch manufacturing process through interpretable data mining models. Journal of Intelligent Manufacturing, 20(5), 523–534.

    Article  Google Scholar 

  • Lee, H. L., & Whang, S. (2000). Information sharing in a supply chain. International Journal of Manufacturing Technology and Management, 1(1), 79–93.

    Article  Google Scholar 

  • Lee, Y. W., Strong, D. M., Kahn, B. K., & Wang, R. Y. (2002). AIMQ: A methodology for information quality assessment. Information & Management, 40(2), 133–146.

    Article  Google Scholar 

  • Leuschner, R., Rogers, D. S., & Charvet, F. F. (2013). A metaanalysis of supply chain integration and firm performance. Journal of Supply Chain Management, 49(2), 34–57.

    Article  Google Scholar 

  • Li, S., & Lin, B. (2006). Accessing information sharing and information quality in supply chain management. Decision Support Systems, 42(3), 1641–1656.

    Article  Google Scholar 

  • Li, S., Ragu-Nathan, B., Ragu-Nathan, T., & Rao, S. S. (2006). The impact of supply chain management practices on competitive advantage and organizational performance. Omega, 34(2), 107–124.

    Article  Google Scholar 

  • Li, Y., Tarafdar, M., & Subba Rao, S. (2012). Collaborative knowledge management practices: Theoretical development and empirical analysis. International Journal of Operations & Production Management, 32(4), 398–422.

    Article  Google Scholar 

  • Lichtenthaler, U. (2009). Absorptive capacity, environmental turbulence, and the complementarity of organizational learning processes. Academy of Management Journal, 52(4), 822–846.

    Article  Google Scholar 

  • Lin, F. R., Huang, S. H., & Lin, S. C. (2002). Effects of information sharing on supply chain performance in electronic commerce. IEEE Transactions on Engineering Management, 49(3), 258–268.

    Article  Google Scholar 

  • Marcot, B. G., & Penman, T. D. (2019). Advances in Bayesian network modelling: Integration of modelling technologies. Environmental Modelling and Software, 111, 386–393.

    Article  Google Scholar 

  • Mawdsley, J. K., & Somaya, D. (2018). Demand-side strategy, relational advantage, and partner-driven corporate scope: The case for client-led diversification. Strategic Management Journal, 39(7), 1834–1859.

    Article  Google Scholar 

  • McAfee, A., Brynjolfsson, E., & Davenport, T. H. (2012). Big data: The management revolution. Harvard Business Review, 90(10), 60–68.

    Google Scholar 

  • Mentzer, J. T., DeWitt, W., Keebler, J. S., Min, S., Nix, N. W., Smith, C. D., & Zacharia, Z. G. (2001). Defining supply chain management. Journal of Business Logistics, 22(2), 1–25.

    Article  Google Scholar 

  • Min, S., Roath, A. S., Daugherty, P. J., Genchev, S. E., Chen, H., Arndt, A. D., et al. (2005). Supply chain collaboration: What’s happening? The International Journal of Logistics Management, 16(2), 237–256.

    Article  Google Scholar 

  • Modi, S. B., & Mabert, V. A. (2007). Supplier development: Improving supplier performance through knowledge transfer. Journal of Operations Management, 25(1), 42–64.

    Article  Google Scholar 

  • Montabon, F., Daugherty, P. J., & Chen, H. (2018). Setting standards for single respondent survey design. Journal of Supply Chain Management, 54(1), 35–41.

    Article  Google Scholar 

  • Morgan, R. M., & Hunt, S. D. (1994). The commitment-trust theory of relationship marketing. Journal of Marketing, 58(3), 20–38.

    Article  Google Scholar 

  • Neely, A., Gregory, M., & Platts, K. (1995). Performance measurement system design: A literature review and research agenda. International Journal of Operations & Production Management, 15(4), 80–116.

    Article  Google Scholar 

  • Neely, A., Gregory, M., & Platts, K. (2005). Performance measurement system design: A literature review and research agenda. International Journal of Operations & Production Management, 25(12), 1228–1263.

    Article  Google Scholar 

  • Newbert, S. L. (2007). Empirical research on the resource-based view of the firm: An assessment and suggestions for future research. Strategic Management Journal, 28(2), 121–146.

    Article  Google Scholar 

  • Nicolaou, A. I., Ibrahim, M., & van Heck, E. (2013). Information quality, trust, and risk perceptions in electronic data exchanges. Decision Support Systems, 54(2), 986–996.

    Article  Google Scholar 

  • Nicolaou, A. I., & McKnight, D. H. (2006). Perceived information quality in data exchanges: Effects on risk, trust, and intention to use. Information Systems Research, 17(4), 332–351.

    Article  Google Scholar 

  • Nyaga, G. N., Whipple, J. M., & Lynch, D. F. (2010). Examining supply chain relationships: Do buyer and supplier perspectives on collaborative relationships differ? Journal of Operations Management, 28(2), 101–114.

    Article  Google Scholar 

  • Olorunniwo, F. O., & Li, X. (2010). Information sharing and collaboration practices in reverse logistics. Supply Chain Management: An International Journal, 15(6), 454–462.

    Article  Google Scholar 

  • Özer, Ö., & Wei, W. (2006). Strategic commitments for an optimal capacity decision under asymmetric forecast information. Management Science, 52(8), 1238–1257.

    Article  Google Scholar 

  • Panayides, P. M., & Lun, Y. V. (2009). The impact of trust on innovativeness and supply chain performance. International Journal of Production Economics, 122(1), 35–46.

    Article  Google Scholar 

  • Papadopoulos, T., Gunasekaran, A., Dubey, R., Altay, N., Childe, S. J., & Fosso-Wamba, S. (2017). The role of big data in explaining disaster resilience in supply chains for sustainability. Journal of Cleaner Production, 142, 1108–1118.

    Article  Google Scholar 

  • Patnayakuni, R., Rai, A., & Seth, N. (2006). Relational antecedents of information flow integration for supply chain coordination. Journal of Management Information Systems, 23(1), 13–49.

    Article  Google Scholar 

  • Pearl, J. (1985). Bayesian networks: A model of self-activated memory for evidential reasoning. In Proceedings of the cognitive science society (CSS-7) (pp. 329–334).

  • Perrey, J., Spillecke, D., & Umblijs, A. (2013). Smart analytics: How marketing drives short-term and long-term growth. McKinsey Quarterly, 00425-3. https://www.mckinsey.com/business-functions/marketing-and-sales/our-insights/ebook-big-data-analytics-and-the-future-of-marketing--sales.

  • Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879.

    Article  Google Scholar 

  • Poppo, L., Zhou, K. Z., & Li, J. J. (2016). When can you trust “trust”? Calculative trust, relational trust, and supplier performance. Strategic Management Journal, 37(4), 724–741.

    Article  Google Scholar 

  • Power, D. J., Sohal, A. S., & Rahman, S. U. (2001). Critical success factors in agile supply chain management: An empirical study. International Journal of Physical Distribution & Logistics Management, 31(4), 247–265.

    Article  Google Scholar 

  • Prahinski, C., & Benton, W. C. (2004). Supplier evaluations: Communication strategies to improve supplier performance. Journal of Operations Management, 22(1), 39–62.

    Article  Google Scholar 

  • Prajogo, D., & Olhager, J. (2012). Supply chain integration and performance: The effects of long-term relationships, information technology and sharing, and logistics integration. International Journal of Production Economics, 135(1), 514–522.

    Article  Google Scholar 

  • Rafele, C. (2004). Logistic service measurement: A reference framework. Journal of Manufacturing Technology Management, 15(3), 280–290.

    Article  Google Scholar 

  • Rai, A., Patnayakuni, R., & Seth, N. (2006). Firm performance impacts of digitally enabled supply chain integration capabilities. MIS Quarterly, 30(2), 225–246.

    Article  Google Scholar 

  • Ramanathan, U. (2013). Aligning supply chain collaboration using analytic hierarchy process. Omega, 41(2), 431–440.

    Article  Google Scholar 

  • Randall, T., & Ulrich, K. (2001). Product variety, supply chain structure, and firm performance: Analysis of the US bicycle industry. Management Science, 47(12), 1588–1604.

    Article  Google Scholar 

  • Ravi, V., Kurniawan, H., Thai, P. N. K., & Kumar, P. R. (2008). Soft computing system for bank performance prediction. Applied Soft Computing, 8(1), 305–315.

    Article  Google Scholar 

  • Salaün, Y., & Flores, K. (2001). Information quality: Meeting the needs of the consumer. International Journal of Information Management, 21(1), 21–37.

    Article  Google Scholar 

  • Saltelli, A. (2002). Making best use of model evaluations to compute sensitivity indices. Computer Physics Communications, 145(2), 280–297.

    Article  Google Scholar 

  • Saltelli, A., Tarantola, S., Campolongo, F., & Ratto, M. (2004). Sensitivity analysis in practice: A guide to assessing scientific models. London: Wiley.

    Google Scholar 

  • Sanders, N. R. (2007). An empirical study of the impact of e-business technologies on organizational collaboration and performance. Journal of Operations Management, 25(6), 1332–1347.

    Article  Google Scholar 

  • Sanders, N. R. (2014). Big data driven supply chain management: A framework for implementing analytics and turning information into intelligence. London: Pearson Education.

    Google Scholar 

  • Sarkis, J., & Dhavale, D. G. (2015). Supplier selection for sustainable operations: A triple-bottom-line approach using a Bayesian framework. International Journal of Production Economics, 166, 177–191.

    Article  Google Scholar 

  • Schoenherr, T., & Speier-Pero, C. (2015). Data science, predictive analytics, and big data in supply chain management: Current state and future potential. Journal of Business Logistics, 36(1), 120–132.

    Article  Google Scholar 

  • Seggie, S. H., Kim, D., & Cavusgil, S. T. (2006). Do supply chain IT alignment and supply chain interfirm system integration impact upon brand equity and firm performance? Journal of Business Research, 59(8), 887–895.

    Article  Google Scholar 

  • Sener, A., Barut, M., Oztekin, A., Avcilar, M. Y., & Yildirim, M. B. (2019). The role of information usage in a retail supply chain: A causal data mining and analytical modeling approach. Journal of Business Research, 99, 87–104.

    Article  Google Scholar 

  • Shockley, J., & Fetter, G. (2015). Distribution co-opetition and multi-level inventory management performance: An industry analysis and simulation. Journal of Purchasing and Supply Management, 21(1), 51–63.

    Article  Google Scholar 

  • Sim, J., & Wright, C. C. (2005). The kappa statistic in reliability studies: Use, interpretation, and sample size requirements. Physical Therapy, 85(3), 257–268.

    Article  Google Scholar 

  • Soh, K. L., Jayaraman, K., Yen, T. S., & Kiumarsi, S. (2016). The role of suppliers in establishing buyer–supplier relationship towards better supplier performance. International Journal of Productivity and Quality Management, 17(2), 183–197.

    Article  Google Scholar 

  • Srinivasan, R., & Swink, M. (2018). An investigation of visibility and flexibility as complements to supply chain analytics: An organizational information processing theory perspective. Production and Operations Management, 27(10), 1849–1867.

    Article  Google Scholar 

  • Stank, T. P., Keller, S. B., & Daugherty, P. J. (2001). Supply chain collaboration and logistical service performance. Journal of Business Logistics, 22(1), 29–48.

    Article  Google Scholar 

  • Stevens, G. C. (1989). Integrating the supply chain. International Journal of Physical Distribution & Materials Management, 19(8), 3–8.

    Article  Google Scholar 

  • Swaminathan, J. M., Sadeh, N. M., & Smith, S. F. (1997). Effect of sharing supplier capacity information. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.46.3933.

  • Swink, M., Narasimhan, R., & Wang, C. (2007). Managing beyond the factory walls: Effects of four types of strategic integration on manufacturing plant performance. Journal of Operations Management, 25(1), 148–164.

    Article  Google Scholar 

  • Tarí, J. J., Molina-Azorín, J. F., Pereira-Moliner, J., López-Gamero, M. D., & Pertusa-Ortega, E. M. (2014). Quality management and performance in the hotel industry: A literature review. In M. Peris-Ortiz & J. Alvarez-Garcia (Eds.), Action-based quality management (pp. 1–12). Cham: Springer.

    Google Scholar 

  • Terpend, R., & Ashenbaum, B. (2012). The intersection of power, trust and supplier network size: Implications for supplier performance. Journal of Supply Chain Management, 48(3), 52–77.

    Article  Google Scholar 

  • Terpend, R., & Krause, D. R. (2015). Competition or cooperation? Promoting supplier performance with incentives under varying conditions of dependence. Journal of Supply Chain Management, 51(4), 29–53.

    Article  Google Scholar 

  • Theeranuphattana, A., & Tang, J. C. (2007). A conceptual model of performance measurement for supply chains: Alternative considerations. Journal of Manufacturing Technology Management, 19(1), 125–148.

    Article  Google Scholar 

  • Van den Hooff, B., & De Ridder, J. A. (2004). Knowledge sharing in context: The influence of organizational commitment, communication climate and CMC use on knowledge sharing. Journal of Knowledge Management, 8(6), 117–130.

    Article  Google Scholar 

  • Van der Vaart, T., & van Donk, D. P. (2008). A critical review of survey-based research in supply chain integration. International Journal of Production Economics, 111(1), 42–55.

    Article  Google Scholar 

  • Vickery, S. K., Jayaram, J., Droge, C., & Calantone, R. (2003). The effects of an integrative supply chain strategy on customer service and financial performance: An analysis of direct versus indirect relationships. Journal of Operations Management, 21(5), 523–539.

    Article  Google Scholar 

  • Vijayasarathy, L. R. (2010). Supply integration: An investigation of its multi-dimensionality and relational antecedents. International Journal of Production Economics, 124(2), 489–505.

    Article  Google Scholar 

  • Vivek, N., Sen, S., Savitskie, K., Ranganathan, S. K., & Ravindran, S. (2011). Supplier partnerships, information quality, supply chain flexibility, supply chain integration and organisational performance: The Indian story. International Journal of Integrated Supply Management, 6(2), 181–199.

    Article  Google Scholar 

  • Waller, M. A., & Fawcett, S. E. (2013). Data science, predictive analytics, and big data: A revolution that will transform supply chain design and management. Journal of Business Logistics, 34(2), 77–84.

    Article  Google Scholar 

  • Walton, S. V., & Marucheck, A. S. (1997). The relationship between EDI and supplier reliability. International Journal of Purchasing and Materials Management, 33(2), 30–35.

    Article  Google Scholar 

  • Wamba, S. F., Gunasekaran, A., Dubey, R., & Ngai, E. W. (2018). Big data analytics in operations and supply chain management. Annals of Operations Research, 270(1–2), 1–4.

    Article  Google Scholar 

  • Wang, S. Y., Chang, S. L., & Wang, R. C. (2009). Assessment of supplier performance based on product-development strategy by applying multi-granularity linguistic term sets. Omega, 37(1), 215–226.

    Article  Google Scholar 

  • Wang, Z., Ye, F., & Tan, K. H. (2014). Effects of managerial ties and trust on supply chain information sharing and supplier opportunism. International Journal of Production Research, 52(23), 7046–7061.

    Article  Google Scholar 

  • Wei, H. L., Wong, C. W., & Lai, K. H. (2012). Linking inter-organizational trust with logistics information integration and partner cooperation under environmental uncertainty. International Journal of Production Economics, 139(2), 642–653.

    Article  Google Scholar 

  • Wiengarten, F., Humphreys, P., Cao, G., Fynes, B., & McKittrick, A. (2010). Collaborative supply chain practices and performance: Exploring the key role of information quality. Supply Chain Management: An International Journal, 15(6), 463–473.

    Article  Google Scholar 

  • Williams, P., & Naumann, E. (2011). Customer satisfaction and business performance: A firm-level analysis. Journal of Services Marketing, 25(1), 20–32.

    Article  Google Scholar 

  • Wisner, J. D., & Fawcett, S. E. (1991). Linking firm strategy to operating decisions through performance measurement. Production and Inventory Management Journal, 32(3), 5.

    Google Scholar 

  • Wong, C. W., Wong, C. Y., & Boon-itt, S. (2013). The combined effects of internal and external supply chain integration on product innovation. International Journal of Production Economics, 146(2), 566–574.

    Article  Google Scholar 

  • Wowak, K. D., Craighead, C. W., Ketchen, D. J., & Hult, G. T. M. (2013). Supply chain knowledge and performance: A meta-analysis. Decision Sciences, 44(5), 843–875.

    Article  Google Scholar 

  • Wu, L., Chuang, C. H., & Hsu, C. H. (2014). Information sharing and collaborative behaviors in enabling supply chain performance: A social exchange perspective. International Journal of Production Economics, 148, 122–132.

    Article  Google Scholar 

  • Yang, J., Wang, J., Wong, C. W., & Lai, K. H. (2008). Relational stability and alliance performance in supply chain. Omega, 36(4), 600–608.

    Article  Google Scholar 

  • Yao, D. Q., Yue, X., & Liu, J. (2008). Vertical cost information sharing in a supply chain with value-adding retailers. Omega, 36(5), 838–851.

    Article  Google Scholar 

  • Yu, W., Jacobs, M. A., Salisbury, W. D., & Enns, H. (2013). The effects of supply chain integration on customer satisfaction and financial performance: An organizational learning perspective. International Journal of Production Economics, 146(1), 346–358.

    Article  Google Scholar 

  • Zhang, X., Deng, Y., Chan, F. T. S., Adamatzky, A., & Mahadevan, S. (2016). Supplier selection based on evidence theory and analytic network process. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 230(3), 562–573.

    Article  Google Scholar 

  • Zhao, L., Huo, B., Sun, L., & Zhao, X. (2013). The impact of supply chain risk on supply chain integration and company performance: A global investigation. Supply Chain Management: An International Journal, 18(2), 115–131.

    Article  Google Scholar 

  • Zhao, X., Huo, B., Flynn, B. B., & Yeung, J. H. Y. (2008). The impact of power and relationship commitment on the integration between manufacturers and customers in a supply chain. Journal of Operations Management, 26(3), 368–388.

    Article  Google Scholar 

  • Zhao, X., Huo, B., Selen, W., & Yeung, J. H. Y. (2011). The impact of internal integration and relationship commitment on external integration. Journal of Operations Management, 29(1–2), 17–32.

    Article  Google Scholar 

  • Zsidisin, G. A., & Smith, M. E. (2005). Managing supply risk with early supplier involvement: A case study and research propositions. Journal of Supply Chain Management, 41(4), 44–57.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Barut.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sener, A., Barut, M., Dag, A. et al. Impact of commitment, information sharing, and information usage on supplier performance: a Bayesian belief network approach. Ann Oper Res 303, 125–158 (2021). https://doi.org/10.1007/s10479-019-03504-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-019-03504-8

Keywords