Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Pricing commodity futures and determining risk premia in a three factor model with stochastic volatility: the case of Brent crude oil

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this paper we introduce a three factor model to price commodity futures contracts. This model allows both the spot price volatility and convenience yield to be stochastic, nevertheless futures prices can be obtained conveniently in closed form. Further, we use Brent crude oil futures prices to calibrate the model using the extended Kalman filter. In comparison to the benchmark model for commodity futures pricing, the Schwartz two-factor model, our three factor model shows a superior fit for contracts that have longer maturities. We further assess risk premia in Brent crude oil through the two models and observe that the Schwartz two-factor model over-predicts risk premia in comparison to the new model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material (data transparency)

All data are available through Bloomberg and other data providers.

Notes

  1. We chose Brent crude oil, as it provides a global benchmark. Oil sold internationally is typically priced off Brent, see (Scheitrum et al. 2018). West Texas Intermediate (WTI), a reasonable alternative, is more geared toward the US market. Nevertheless, our study could be easily adapted to cover WTI prices instead of Brent crude oil.

  2. This can be simply verified by substitution.

  3. In terms of the actual meaning of parameter, we should compare \(\mu \) in the two factor model with \(\mu \) in the three factor model; \(\kappa \) in the two factor model with \(\kappa _1\) in the three factor model; \(\alpha \) in the two factor model with \(\alpha \) in the three factor model; \(\sigma _2\) in the two factor model with \(\sigma _1\) in the three factor model; \(\rho \) in the two factor model with \(\rho _1\) in the three factor model and \(\lambda \) in the two factor model with \(\lambda \) in the three factor model.

References

  • Baker, S. D. (2021). The financialization of storable commodities. Management Science, 67(1), 471–499.

    Article  Google Scholar 

  • Bakshi, G., Gao, X., & Rossi, A. G. (2019). Understanding the sources of risk underlying the cross section of commodity returns. Management Science, 65(2), 619–641.

    Article  Google Scholar 

  • Basu, D., & Miffre, J. (2013). Capturing the risk premium of commodity futures: The role of hedging pressure. Journal of Banking and Finance, 37(7), 2652–2664.

    Article  Google Scholar 

  • Brennan, M. J. (1958). The supply of storage. The American Economic Review, 48(1), 50–72.

    Google Scholar 

  • Brooks, C., Prokopczuk, M., & Yingying, W. (2013). Commodity futures prices: More evidence on forecast power, risk premia and the theory of storage. The Quarterly Review of Economics and Finance, 53(1), 73–85.

    Article  Google Scholar 

  • Casassus, J., & Collin-Dufresne, P. (2005). Stochastic convenience yield implied from commodity futures and interest rates. The Journal of Finance, 60(5), 2283–2331.

    Article  Google Scholar 

  • Cassese, G., & Guidolin, M. (2006). Modelling the implied volatility surface: Does market efficiency matter?: An application to MIB30 index options. International Review of Financial Analysis, 15(2), 145–178.

    Article  Google Scholar 

  • Chiarella, C., Kang, B., Nikitopoulos, C. S., & Tô, T.-D. (2016). The Return-volatility relation in commodity futures markets. Journal of Futures Markets, 36(2), 127–152.

    Article  Google Scholar 

  • Cifuentes, S., Cortazar, G., Ortega, H., & Schwartz, E. S. (2020). Expected prices, futures prices and time-varying risk premiums: The case of copper. Resources Policy, 69, 101825.

    Article  Google Scholar 

  • Cortazar, G., & Schwartz, E. S. (1997). Implementing a real option model for valuing an undeveloped oil field. International Transactions in Operational Research, 4(2), 125–137.

    Article  Google Scholar 

  • Cortazar, G., & Schwartz, E. S. (2003). Implementing a stochastic model for oil futures prices. Energy Economics, 25(3), 215–238.

    Article  Google Scholar 

  • Date, P., Mamon, R., & Tenyakov, A. (2013). Filtering and forecasting commodity futures prices under an HMM framework. Energy Economics, 40, 1001–1013.

    Article  Google Scholar 

  • Erb, P., Lüthi, D., & Otziger, S. (2011). Schwartz 1997 two-factor model technical document.

  • Ewald, C., & Zou, Y. (2021). Analytic formulas for futures and options for a linear quadratic jump diffusion model with seasonal stochastic volatility and convenience yield: Do fish jump? European Journal of Operational Research, 294(2), 801–815.

    Article  Google Scholar 

  • Ewald, C.-O., & Ouyang, R. (2017). An analysis of the fish pool market in the context of seasonality and stochastic convenience yield. Marine Resource Economics, 32(4), 431–449.

    Article  Google Scholar 

  • Fama, Eugene F., & French, Kenneth R. (1987). Commodity futures prices: Some evidence on forecast power, premiums, and the theory of storage. Journal of Business, 60, 55–73.

    Article  Google Scholar 

  • Gatheral, J. (2011). The volatility surface: A practitioners guide. New York: Wiley.

    Google Scholar 

  • Gibson, R., & Schwartz, E. S. (1990). Stochastic convenience yield and the pricing of oil contingent claims. The Journal of Finance, 45(3), 959–976.

    Article  Google Scholar 

  • Gorton, G. B., Hayashi, F., Geert, K., & Rouwenhorst. (2013). The fundamentals of commodity futures returns. Review of Finance, 17(1), 35–105.

    Article  Google Scholar 

  • Hahn, W. J., DiLellio, J. A., & Dyer, J. S. (2018). Risk premia in commodity price forecasts and their impact on valuation. Energy Economics, 72, 393–403.

    Article  Google Scholar 

  • Hamilton, J. D., & Jing Cynthia, W. (2014). Risk premia in crude oil futures prices. Journal of International Money and Finance, 42, 9–37.

    Article  Google Scholar 

  • Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. Review of Financial Studies, 6(2), 327–343.

    Article  Google Scholar 

  • Hilliard, Jimmy E., & Reis, Jorge. (1998). Valuation of commodity futures and options under stochastic convenience yields, interest rates, and jump diffusions in the spot. Journal of Financial and Quantitative Analysis, 33(1), 61–86.

    Article  Google Scholar 

  • Kang, W., Ratti, R. A., & Yoon, K. H. (2015). Time-varying effect of oil market shocks on the stock market. Journal of Banking and Finance, 61, S150–S163.

    Article  Google Scholar 

  • Koijen, R. S. J., Moskowitz, T. J., Pedersen, L. H., & Vrugt, E. B. (2018). Carry. Journal of Financial Economics, 127(2), 197–225.

    Article  Google Scholar 

  • Longstaff, F. A., & Wang, A. W. (2004). Electricity forward prices: A high-frequency empirical analysis. The Journal of Finance, 59(4), 1877–1900.

    Article  Google Scholar 

  • Miltersen, K. R., & Schwartz, E. S. (1998). Pricing of options on commodity futures with stochastic term structures of convenience yields and interest rates. Journal of Financial and Quantitative Analysis, 33(01), 33–59.

    Article  Google Scholar 

  • Pasricha, G. K. (2006). Kalman filter and its economic applications.

  • Pindyck, R. S. (2001). The dynamics of commodity spot and futures markets: A primer. The Energy Journal, 22(3), 1.

    Article  Google Scholar 

  • Sakkas, A., & Tessaromatis, N. (2020). Factor based commodity investing. Journal of Banking and Finance, 115, 105807.

    Article  Google Scholar 

  • Scheitrum, D. P., Carter, C. A., & Revoredo-Giha, C. (2018). WTI and Brent futures pricing structure. Energy Economics, 72, 462–469.

    Article  Google Scholar 

  • Schröder, M. (1989). Computing the constant elasticity of variance option pricing formula. The Journal of Finance, 44(1), 211–219.

    Article  Google Scholar 

  • Schwartz, E. S. (1997). The stochastic behavior of commodity prices: Implications for valuation and hedging. The Journal of Finance, 52(3), 923–973.

    Article  Google Scholar 

  • Schwartz, E., & Smith, J. E. (2000). Short-term variations and long-term dynamics in commodity prices. Management Science, 46(7), 893–911.

    Article  Google Scholar 

  • Sun, X., Hao, J., & Li, J. (2020). Multi-objective optimization of crude oil-supply portfolio based on interval prediction data. Annals of Operations Research, 386, 1–29.

    Google Scholar 

  • Szymanowska, M., De Roon, F., Nijman, T., & Van Den Goorbergh, R. (2014). An anatomy of commodity futures risk premia. The Journal of Finance, 69(1), 453–482.

    Article  Google Scholar 

  • Yao, C.-Z., & Kuang, P.-C. (2019). A study of lead-lag structure between international crude oil price and several financial markets. Physica A: Statistical Mechanics and Its Applications, 531, 121755.

    Article  Google Scholar 

  • Zhu, H., Guo, Y., & You, W. (2015). An empirical research of crude oil price changes and stock market in China: Evidence from the structural breaks and quantile regression. Applied Economics, 47(56), 6055–6074.

    Article  Google Scholar 

Download references

Funding

This work is support by the National Natural Science Foundation of China (Grant No. 72001090), the Guangdong Basic and Applied Basic Research Foundation (No.2020A1515010846) and the Natural Science Foundation of Zhejiang Province (No. LQ20G010003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruolan Ouyang.

Ethics declarations

Conflict of interest

None of the authors has a conflict of interest to disclose.

Code availability (software application or custom code)

Code will be available from the authors on request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A explicit expression for A(T)

A explicit expression for A(T)

$$\begin{aligned} A(T)= & {} A1+A2+A3+A4+A5+A6-A7 \end{aligned}$$
(21)
$$\begin{aligned} A1= & {} rT-{\hat{\alpha }} T-\frac{{\hat{\alpha }} e^{-\kappa _{1}T}}{\kappa _{1}} \end{aligned}$$
(22)
$$\begin{aligned} A2= & {} \frac{\kappa _{2}{\hat{\theta }}\sigma _{1}\rho _{1}T}{bf}-\frac{\kappa _{2}{\hat{\theta }}\sigma _{1}\rho _{1}e^{bT}}{b^{2}f}+\frac{(\sigma _{2}\sigma _{1}\rho _{1}e^{bT})^{2}}{4b^{3}f^{2}}\nonumber \\&+\frac{(\sigma _{2}\sigma _{1}\rho _{1})^{2}T}{2b^{2}f^{2}}-\frac{(\sigma _{2}\sigma _{1}\rho _{1})^{2}e^{bT}}{b^{3}f^{2}} \end{aligned}$$
(23)
$$\begin{aligned} A3= & {} -\frac{\sigma _{2}^{3}\sigma _{1}^{2}\rho _{1}^{2}\rho _{2}\kappa _{2}T}{b^{2}f^{2}\kappa _{1}^{2}}\nonumber \\&+\frac{\sigma _{2}^{4}\sigma _{1}^{2}\rho _{1}^{2}\rho _{2}^{2}T}{2b^{2}f^{2}\kappa _{1}^{2}}+\frac{\sigma _{2}^{3}\sigma _{1}^{2}\rho _{1}^{2}\rho _{2}T}{b^{2}f^{2}\kappa _{1}}+\frac{\sigma _{2}^{2}\sigma _{1}^{2}\rho _{1}^{2}\kappa _{2}e^{bT}}{b^{3}f^{2}\kappa _{1}}\nonumber \\&-\frac{\sigma _{2}^{3}\sigma _{1}^{2}\rho _{1}^{2}\rho _{2}e^{bT}}{b^{3}f^{2}\kappa _{1}}-\frac{\sigma _{1}^{2}\sigma _{2}\rho _{3}\rho _{1}T}{bf\kappa _{1}}+\frac{\sigma _{1}^{2}\sigma _{2}\rho _{3}\rho _{1}e^{bT}}{b^{2}f\kappa _{1}}\nonumber \\&-\frac{\kappa _{2}^{2}{\hat{\theta }}\sigma _{1}\rho _{1}T}{bf\kappa _{1}}+\frac{\kappa _{2}^{2}\sigma _{2}^{2}\sigma _{1}^{2}\rho _{1}^{2}T}{2b^{2}f^{2}\kappa _{1}^{2}}\nonumber \\&-\frac{\kappa _{2}\sigma _{2}^{2}\sigma _{1}^{2}\rho _{1}^{2}T}{b^{2}f^{2}\kappa _{1}}-\frac{\sigma _{1}^{2}\sigma _{2}^{2}\rho _{3}\rho _{1}\rho _{2}T}{bf\kappa _{1}^{2}}+\frac{\sigma _{1}^{2}\sigma _{2}\rho _{3}\rho _{1}\kappa _{2}T}{bf\kappa _{1}^{2}} \end{aligned}$$
(24)
$$\begin{aligned} A4= & {} \frac{2\sigma _{1}^{2}\sigma _{2}\rho _{3}\rho _{1}\kappa _{2}}{bf\kappa _{1}^{3}e^{\kappa _{1}T}}-\frac{\sigma _{2}^{4}\sigma _{1}^{2}\rho _{1}^{2}\rho _{2}^{2}}{4b^{2}f^{2}\kappa _{1}^{3}e^{2\kappa _{1}T}}+\frac{\sigma _{2}^{4}\sigma _{1}^{2}\rho _{1}^{2}\rho _{2}^{2}}{b^{2}f^{2}\kappa _{1}^{3}e^{\kappa _{1}T}}\nonumber \\&+\frac{\sigma _{2}^{3}\sigma _{1}^{2}\rho _{1}^{2}\rho _{2}}{b^{2}f^{2}\kappa _{1}^{2}e^{\kappa _{1}T}}-\frac{\sigma _{2}^{2}\sigma _{1}^{2}\rho _{1}^{2}\kappa _{2}^{2}}{4b^{2}f^{2}\kappa _{1}^{3}e^{2\kappa _{1}T}}+\frac{\sigma _{2}^{2}\sigma _{1}^{2}\rho _{1}^{2}\kappa _{2}^{2}}{b^{2}f^{2}\kappa _{1}^{3}e^{\kappa _{1}T}}\nonumber \\&-\frac{\sigma _{2}^{2}\sigma _{1}^{2}\rho _{1}^{2}\kappa _{2}}{b^{2}f^{2}\kappa _{1}^{2}e^{\kappa _{1}T}}-\frac{\sigma _{1}^{2}\sigma _{2}\rho _{1}\rho _{3}}{bf\kappa _{1}^{2}e^{\kappa _{1}T}}+\frac{\sigma _{2}^{3}\sigma _{1}^{2}\rho _{1}^{2}\rho _{2}\kappa _{2}}{2b^{2}f^{2}\kappa _{1}^{3}e^{2\kappa _{1}T}}\nonumber \\&-\frac{2\sigma _{2}^{3}\sigma _{1}^{2}\rho _{1}^{2}\rho _{2}\kappa _{2}}{b^{2}f^{2}\kappa _{1}^{3}e^{\kappa _{1}T}}-\frac{\sigma _{2}\sigma _{1}^{2}\rho _{1}\rho _{3}\kappa _{2}}{2bf\kappa _{1}^{3}e^{2\kappa _{1}T}}+\frac{\sigma _{2}^{2}\sigma _{1}^{2}\rho _{1}\rho _{2}\rho _{3}}{2bf\kappa _{1}^{3}e^{2\kappa _{1}T}}\nonumber \\&-\frac{2\sigma _{2}^{2}\sigma _{1}^{2}\rho _{1}\rho _{2}\rho _{3}}{bf\kappa _{1}^{3}e^{\kappa _{1}T}}-\frac{\kappa _{2}^{2}{\hat{\theta }}\sigma _{1}\rho _{1}}{bf\kappa _{1}^{2}e^{\kappa _{1}T}}+\frac{\kappa _{2}{\hat{\theta }}\sigma _{1}\sigma _{2}\rho _{1}\rho _{2}}{bf\kappa _{1}^{2}e^{\kappa _{1}T}} \end{aligned}$$
(25)
$$\begin{aligned} A5= & {} \frac{\sigma _{2}^{3}\sigma _{1}^{2}\rho _{1}^{2}\rho _{2}e^{(b-\kappa _{1})T}}{b^{2}f^{2}\kappa _{1}(b-\kappa _{1})}-\frac{\sigma _{2}^{2}\sigma _{1}^{2}\rho _{1}^{2}\kappa _{2}e^{(b-\kappa _{1})T}}{b^{2}f^{2}\kappa _{1}(b-\kappa _{1})}-\frac{\sigma _{2}\sigma _{1}^{2}\rho _{1}\rho _{3}e^{(b-\kappa _{1})T}}{bf\kappa _{1}(b-\kappa _{1})} \end{aligned}$$
(26)
$$\begin{aligned} A6= & {} \frac{\sigma _{1}^{2}e^{-\kappa _{1}T}}{\kappa _{1}^{3}}-\frac{\sigma _{1}^{2}e^{-2\kappa _{1}T}}{4\kappa _{1}^{3}}+\frac{\sigma _{1}^{2}T}{2\kappa _{1}^{2}} \end{aligned}$$
(27)
$$\begin{aligned} A7= & {} \frac{2\sigma _{1}^{2}\sigma _{2}\rho _{3}\rho _{1}\kappa _{2}}{bf\kappa _{1}^{3}}-\frac{\sigma _{2}^{4}\sigma _{1}^{2}\rho _{1}^{2}\rho _{2}^{2}}{4b^{2}f^{2}\kappa _{1}^{3}}+\frac{\sigma _{2}^{4}\sigma _{1}^{2}\rho _{1}^{2}\rho _{2}^{2}}{b^{2}f^{2}\kappa _{1}^{3}}\nonumber \\&+\frac{\sigma _{2}^{3}\sigma _{1}^{2}\rho _{1}^{2}\rho _{2}}{b^{2}f^{2}\kappa _{1}^{2}}-\frac{\sigma _{2}^{2}\sigma _{1}^{2}\rho _{1}^{2}\kappa _{2}^{2}}{4b^{2}f^{2}\kappa _{1}^{3}}+\frac{\sigma _{2}^{2}\sigma _{1}^{2}\rho _{1}^{2}\kappa _{2}^{2}}{b^{2}f^{2}\kappa _{1}^{3}}\nonumber \\&-\frac{\sigma _{2}^{2}\sigma _{1}^{2}\rho _{1}^{2}\kappa _{2}}{b^{2}f^{2}\kappa _{1}^{2}}-\frac{\sigma _{1}^{2}\sigma _{2}\rho _{1}\rho _{3}}{bf\kappa _{1}^{2}}+\frac{\sigma _{2}^{3}\sigma _{1}^{2}\rho _{1}^{2}\rho _{2}\kappa _{2}}{2b^{2}f^{2}\kappa _{1}^{3}}\nonumber \\&-\frac{2\sigma _{2}^{3}\sigma _{1}^{2}\rho _{1}^{2}\rho _{2}\kappa _{2}}{b^{2}f^{2}\kappa _{1}^{3}}-\frac{\sigma _{2}\sigma _{1}^{2}\rho _{1}\rho _{3}\kappa _{2}}{2bf\kappa _{1}^{3}}+\frac{\sigma _{2}^{2}\sigma _{1}^{2}\rho _{1}\rho _{2}\rho _{3}}{2bf\kappa _{1}^{3}}\nonumber \\&-\frac{2\sigma _{2}^{2}\sigma _{1}^{2}\rho _{1}\rho _{2}\rho _{3}}{bf\kappa _{1}^{3}}-\frac{\kappa _{2}^{2}{\hat{\theta }}\sigma _{1}\rho _{1}}{bf\kappa _{1}^{2}}+\frac{\kappa _{2}{\hat{\theta }}\sigma _{1}\sigma _{2}\rho _{1}\rho _{2}}{bf\kappa _{1}^{2}}\nonumber \\&-\frac{\kappa _{2}{\hat{\theta }}\sigma _{1}\rho _{1}}{b^{2}f}+\frac{(\sigma _{2}\sigma _{1}\rho _{1})^{2}}{4b^{3}f^{2}}-\frac{(\sigma _{2}\sigma _{1}\rho _{1})^{2}}{b^{3}f^{2}}\nonumber \\&+\frac{\sigma _{2}^{3}\sigma _{1}^{2}\rho _{1}^{2}\rho _{2}}{b^{2}f^{2}\kappa _{1}(b-\kappa _{1})}-\frac{\sigma _{2}^{2}\sigma _{1}^{2}\rho _{1}^{2}\kappa _{2}}{b^{2}f^{2}\kappa _{1}(b-\kappa _{1})}-\frac{\sigma _{2}\sigma _{1}^{2}\rho _{1}\rho _{3}}{bf\kappa _{1}(b-\kappa _{1})}\nonumber \\&-\frac{\sigma _{2}^{3}\sigma _{1}^{2}\rho _{1}^{2}\rho _{2}}{b^{3}f^{2}\kappa _{1}}+\frac{\sigma _{2}^{2}\sigma _{1}^{2}\rho _{1}^{2}\kappa _{2}}{b^{3}f^{2}\kappa _{1}}+\frac{\sigma _{1}^{2}\sigma _{2}\rho _{3}\rho _{1}}{b^{2}f\kappa _{1}}\nonumber \\&-\frac{{\hat{\alpha }} }{\kappa _{1}}+\frac{\sigma _{1}^{2}}{\kappa _{1}^{3}}-\frac{\sigma _{1}^{2}}{4\kappa _{1}^{3}} \end{aligned}$$
(28)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Ewald, C., Ouyang, R. et al. Pricing commodity futures and determining risk premia in a three factor model with stochastic volatility: the case of Brent crude oil. Ann Oper Res 313, 29–46 (2022). https://doi.org/10.1007/s10479-021-04198-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-021-04198-7

Keywords

JEL Classification