Abstract
The aims of our study were to determine the prevalence of the babA2 gene within Helicobacter pylori strains circulating in the Slovenian pediatric population, to further clarify its significance in causing inflammation of gastric mucosa in children and to verify whether cagA, vacA, iceA and babA genes work independently or synergistically in causing gastritis. A total of 163 H. pylori isolates obtained from the same number of children were tested for the presence of cagA, vacA and iceA genes using previously established methods, while the babA2 gene was determined using novel polymerase chain reaction assay targeting a 139-bp fragment of the central region of babA2. The babA2 gene was detected in 47.9 % of H. pylori samples. The presence of the babA2 gene was strongly associated with cagA, vacA s1 and vacA m1 genotype. The babA2 status correlated positively with bacterial density score, activity of inflammation and chronic inflammation of gastric mucosa. No significant correlation was found between the babA2 status and the presence of atrophy or intestinal metaplasia. In addition, the activity of gastric inflammation and density score were significantly associated with the coexpression of the cagA, vacA s1, vacA m1 and babA2 genes. The study, which included the largest number of pediatric H. pylori samples to date, confirmed that babA2 gene plays an important role in the pathogenesis of H. pylori gastritis in children. Furthermore, our results suggest that babA2, cagA and vacA s1 and m1 gene products may work synergistically in worsening the inflammation of gastric mucosa.
Similar content being viewed by others
References
Backert S, Clyne M, Tegtmeyer N (2011) Molecular mechanisms of gastric epithelial cell adhesion and injection of CagA by Helicobacter pylori. Cell Commun Signal 9:28
Boyanova L, Yordanov D, Gergova G, Markovska R, Mitov I (2010) Association of iceA and babA genotypes in Helicobacter pylori strains with patient and strain characteristics. Antonie Van Leeuwenhoek 98:343–350
Colbeck JC, Hansen LM, Fong JM, Solnick JV (2006) Genotypic profile of the outer membrane proteins BabA and BabB in clinical isolates of Helicobacter pylori. Infect Immun 74:4375–4378
Delahay RM, Rugge M (2012) Pathogenesis of Helicobacter pylori infection. Helicobacter 17(Suppl 1):9–15
Dimitrov G, Gottrand F (2006) Does gastric atrophy exist in children? World J Gastroenterol 12:6274–6279
Dixon MF, Genta RM, Yardley JH, Correa P (1996) Classification and grading of gastritis. The updated Sydney System. International workshop on the histopathology of gastritis, Houston 1994. Am J Surg Pathol 20:1161–1181
Ertem D (2013) Clinical practice: Helicobacter pylori infection in childhood. Eur J Pediatr 172:1427–1434
Fujimoto S, Olaniyi Ojo O, Arnqvist A, Wu JY, Odenbreit S, Haas R, Graham DY, Yamaoka Y (2007) Helicobacter pylori BabA expression, gastric mucosal injury, and clinical outcome. Clin Gastroenterol Hepatol 5:49–58
Garcia GT, Aranda KR, Goncalves ME, Cardoso SR, Iriya K, Silva NP, Scaletsky IC (2010) High prevalence of clarithromycin resistance and cagA, vacA, iceA2, and babA2 genotypes of Helicobacter pylori in Brazilian children. J Clin Microbiol 48:4266–4268
Gerhard M, Lehn N, Neumayer N, Borén T, Rad R, Schepp W, Miehlke S, Classen M, Prinz C (1999) Clinical relevance of the Helicobacter pylori gene for blood-group antigen-binding adhesin. Proc Natl Acad Sci USA 96:12778–12783
Guarner J, Herrera-Goepfert R, Mohar A, Sanchez L, Halperin D, Ley C, Parsonnet J (2001) Gastric atrophy and extent of intestinal metaplasia in a cohort of Helicobacter pylori- infected patients. Hum Pathol 32:31–35
Gwack J, Shin A, Kim CS, Ko KP, Kim Y, Jun JK, Bae J, Park SK, Hong YC, Kang D, Chang SH, Shin HR, Yoo KY (2006) CagA-producing Helicobacter pylori and increased risk of gastric cancer: a nested case–control study in Korea. Br J Cancer 95:639–641
Homan M, Luzar B, Kocjan BJ, Orel R, Mocilnik T, Shrestha M, Kveder M, Poljak M (2009) Prevalence and clinical relevance of cagA, vacA, and iceA genotypes of Helicobacter pylori isolated from Slovenian children. J Pediatr Gastroenterol Nutr 49:289–296
Ilver D, Arnqvist A, Ogren J, Frick IM, Kersulyte D, Incecik ET, Berg DE, Covacci A, Engstrand L, Borén T (1998) Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science 279:373–377
Jang S, Jones KR, Olsen CH, Joo YM, Yoo YJ, Chung IS, Cha JH, Merrell DS (2010) Epidemiological link between gastric disease and polymorphisms in VacA and CagA. J Clin Microbiol 48:559–567
Klindermann A, Lopes AI (2009) Helicobacter pylori infection in pediatrics. Helicobacter 14(Suppl 1):52–57
Koletzko S, Richy F, Bontems P, Crone J, Kalach N, Monteiro ML, Gottrand F, Celinska-Cedro D, Roma-Giannikou E, Orderda G, Kolacek S, Urruzuno P, Martínez-Gómez MJ, Casswall T, Ashorn M, Bodanszky H, Mégraud F (2006) Prospective multicentre study on antibiotic resistance of Helicobacter pylori strains obtained from children living in Europe. Gut 55:1711–1716
Matteo MJ, Armitano RI, Romeo M, Wonaga A, Olmos M, Catalano M (2011) Helicobacter pylori bab genes during chronic colonization. Int J Mol Epidemiol Genet 2:286–291
Oleastro M, Gerhard M, Lopes AI, Ramalho P, Cabral J, Sousa Guerreiro A, Monteiro L (2003) Helicobacter pylori virulence genotypes in Portuguese children and adults with gastroduodenal pathology. Eur J Clin Microbiol Infect Dis 22:85–91
Oleastro M, Santos A, Cordeiro R, Nunes B, Megraud F, Menard A (2010) Clinical relevance and diversity of two homologous genes encoding glycosyltransferases in Helicobacter pylori. J Clin Microbiol 48:2885–2891
Olfat FO, Zheng Q, Oleastro M, Voland P, Borén T, Karttunen R, Engstrand L, Rad R, Prinz C, Gerhard M (2005) Correlation of the Helicobacter pylori adherence factor BabA with duodenal ulcer disease in four European countries. FEMS Immunol Med Microbiol 44:151–156
Ozbey G, Dogan Y, Demiroren K (2013) Prevalence of Helicobacter pylori virulence genotypes among children in Eastern Turkey. World J Gastroenterol 19:6585–6589
Pellicano R, Franceschi F, Saracco G, Fagoonee S, Roccarina D, Gasbarrini A (2009) Helicobacters and extragastric diseases. Helicobacter 14(Suppl 1):58–68
Platt AR, Woodhall RW, George AL Jr (2007) Improved DNA sequencing quality and efficiency using an optimized fast cycle sequencing protocol. Biotechniques 43:58, 60, 62
Podzorski RP, Podzorski DS, Wuerth A, Tolia V (2003) Analysis of the vacA, cagA, cagE, iceA, and babA2 genes in Helicobacter pylori from sixty-one pediatric patients from the Midwestern United States. Diagn Microbiol Infect Dis 46:83–88
Pride DT, Meinersmann RJ, Blaser MJ (2001) Allelic variation within Helicobacter pylori babA and babB. Infect Immun 69:1160–1171
Salama N, Guillemin K, McDaniel TK, Sherlock G, Tompkins L, Falkow S (2000) A whole- genome microarray reveals genetic diversity among Helicobacter pylori strains. Proc Natl Acad Sci USA 97:14668–14673
Sgouros SN, Bergele C (2006) Clinical outcome of patients with Helicobacter pylori infection: the bug, the host, or the environment? Postgrad Med J 82:338–342
Sheu BS, Sheu SM, Yang HB, Huang AH, Wu JJ (2003) Host gastric Lewis expression determines the bacterial density of Helicobacter pylori in babA2 genopositive infection. Gut 52:927–932
Suzuki R, Shiota S, Yamaoka Y (2012) Molecular epidemiology, population genetics, and pathogenic role of Helicobacter pylori. Infect Genet Evol 12:203–213
Talarico S, Gold BD, Fero J, Thompson DT, Guarner J, Czinn S, Salama NR (2009) Pediatric Helicobacter pylori isolates display distinct gene coding capacities and virulence gene marker profiles. J Clin Microbiol 47:1680–1688
Torres LE, Melián K, Moreno A, Alonso J, Sabatier CA, Hernández M, Bermúdez L, Rodríguez BL (2009) Prevalence of vacA, cagA and babA2 genes in Cuban Helicobacter pylori isolates. World J Gastroenterol 15:204–210
Yamaoka Y (2008) Roles of Helicobacter pylori BabA in gastroduodenal pathogenesis. World J Gastroenterol 14:4265–4272
Yamaoka Y (2010) Mechanisms of disease: Helicobacter pylori virulence factors. Nat Rev Gastroenterol Hepatol 7:629–641
Yamaoka Y (2012) Pathogenesis of Helicobacter pylori-related gastroduodenal diseases from molecular epidemiological studies. Gastroenterol Res Pract 2012:371503
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Homan, M., Šterbenc, A., Kocjan, B.J. et al. Prevalence of the Helicobacter pylori babA2 gene and correlation with the degree of gastritis in infected Slovenian children. Antonie van Leeuwenhoek 106, 637–645 (2014). https://doi.org/10.1007/s10482-014-0234-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10482-014-0234-0