Abstract
We show the equivalence of categories of model-theoretic imaginaries (of various kinds) with categories of “small” (finitely generated, finitely presented, coherent) functors. We do this first for certain locally finitely presented categories and then, by localising, for much more general “definable categories” (categories of models of coherent theories). We also investigate the corresponding notion of interpretation.
Similar content being viewed by others
References
Adámek, J., Rosický, J.: Locally presentable and accessible categories. In: London Mathematical Society Lecture Notes Series, vol. 189. Cambridge University Press, Cambridge (1994)
Auslander, M.: Large modules over Artin algebras. In: Algebra, Topology and Category Theory, pp. 1–17. Academic, New York (1976)
Borceux, F.: Handbook of categorical algebra. Encyclopedia of Mathematics and Applications, vol. 1–3. Cambridge University Press, Cambridge (1994)
Feferman, S., Vaught, R.L.: The first order properties of algebraic systems. Fund. Math. 47, 57–103 (1959)
Burke, K.: Some model-theoretic properties of functor categories for modules. Doctoral Thesis, University of Manchester (1994)
Herzog, I.: Elementary duality of modules. Trans. Amer. Math. Soc. 340, 37–69 (1993)
Hodges, W.: Model theory. Encyclopedia of Mathematics and Applications, vol. 42. Cambridge University Press, Cambridge (1993)
Hu, H.: Dualities for accessible categories. In: Canad. Math. Soc. Conf. Proc., vol. 13, pp. 211–242 (1992)
Johnstone, P.T.: Topos Theory. LMS Monographs, no. 10. Academic, New York (1977)
Johnstone, P.T.: Sketches of an Elephant: A Topos Theory Compendium. Oxford Logic Guides, vol. 1 & 2, nos. 43 & 44. Oxford University Press, Oxford (2002)
Keisler, H.J.: Theory of models with generalized atomic formulas. J. Symbolic Logic 25(1), 1–26 (1960)
Keisler, H.J., Chang, C.C.: Model theory, 3rd edn. In: Studies in Logic and Foundations of Mathematics, vol. 73. Elsevier Science, Amsterdam (1990)
Krause, H.: Functors on locally finitely presented categories. Colloq. Math. 75, 105–132 (1998)
MacLane, S.: Categories for the Working Mathematician. Springer, Berlin Heidelberg New York (1971)
MacLane, S., Moerdijk, I.: Sheaves in Geometry and Logic. Springer, Berlin Heidelberg New York (1992)
Makkai, M.: Strong conceptual completeness for first-order logic. Ann. Pure Appl. Logic 40, 167–215 (1988)
Makkai, M.: A theorem on Barr-exact categories with an infinitary generalization. Ann. Pure Appl. Logic 47, 225–268 (1990)
Makkai, M., Paré, R.: Accessible categories: the foundations of categorical model theory. Contemp. Math., vol. 104. American Mathematical Society, Providence (1989)
Makkai, M., Reyes, G.: First Order Categorical Logic. Springer Lecture Notes in Mathematics, vol. 611. Springer, Berlin Heidelberg New York (1977)
Moerdijk, I., Vermeulen, J.J.C.: Proof of a conjecture of Pitts. J. PureAppl.Algebra 143, 329–338 (1999)
Prest, M.: Model Theory and Modules. London Math. Soc. Lecture Notes Ser., vol. 130. Cambridge University Press, Cambridge (1988)
Prest, M.: Definable additive categories: Purity and model theory. University of Manchester, Manchester (2008). Available online at http://eprints/ma.man.ac.uk/1097
Prest, M.: Purity, Spectra and Localisation. Cambridge University Press (in press)
Rosický, J., Adámek, J., Borceux, F.: More on injectivity in locally presentable categories. Theory Appl. Categ. 10, 148–161 (2002)
Rothmaler, Ph.: Purity in model theory. In: Advances in Algebra and Model Theory, pp. 445–469. Gordon and Breach, New York (1997)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Rajani, R., Prest, M. Model-theoretic Imaginaries and Coherent Sheaves. Appl Categor Struct 17, 517–559 (2009). https://doi.org/10.1007/s10485-008-9151-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10485-008-9151-6
Keywords
- Model theory
- Imaginary
- Functor category
- Coherent
- Grothendieck topology
- Localisation
- Definable category
- Interpretation