Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Model-theoretic Imaginaries and Coherent Sheaves

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

We show the equivalence of categories of model-theoretic imaginaries (of various kinds) with categories of “small” (finitely generated, finitely presented, coherent) functors. We do this first for certain locally finitely presented categories and then, by localising, for much more general “definable categories” (categories of models of coherent theories). We also investigate the corresponding notion of interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adámek, J., Rosický, J.: Locally presentable and accessible categories. In: London Mathematical Society Lecture Notes Series, vol. 189. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  2. Auslander, M.: Large modules over Artin algebras. In: Algebra, Topology and Category Theory, pp. 1–17. Academic, New York (1976)

    Google Scholar 

  3. Borceux, F.: Handbook of categorical algebra. Encyclopedia of Mathematics and Applications, vol. 1–3. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  4. Feferman, S., Vaught, R.L.: The first order properties of algebraic systems. Fund. Math. 47, 57–103 (1959)

    MATH  MathSciNet  Google Scholar 

  5. Burke, K.: Some model-theoretic properties of functor categories for modules. Doctoral Thesis, University of Manchester (1994)

  6. Herzog, I.: Elementary duality of modules. Trans. Amer. Math. Soc. 340, 37–69 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hodges, W.: Model theory. Encyclopedia of Mathematics and Applications, vol. 42. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  8. Hu, H.: Dualities for accessible categories. In: Canad. Math. Soc. Conf. Proc., vol. 13, pp. 211–242 (1992)

  9. Johnstone, P.T.: Topos Theory. LMS Monographs, no. 10. Academic, New York (1977)

    MATH  Google Scholar 

  10. Johnstone, P.T.: Sketches of an Elephant: A Topos Theory Compendium. Oxford Logic Guides, vol. 1 & 2, nos. 43 & 44. Oxford University Press, Oxford (2002)

    Google Scholar 

  11. Keisler, H.J.: Theory of models with generalized atomic formulas. J. Symbolic Logic 25(1), 1–26 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  12. Keisler, H.J., Chang, C.C.: Model theory, 3rd edn. In: Studies in Logic and Foundations of Mathematics, vol. 73. Elsevier Science, Amsterdam (1990)

    Google Scholar 

  13. Krause, H.: Functors on locally finitely presented categories. Colloq. Math. 75, 105–132 (1998)

    MATH  MathSciNet  Google Scholar 

  14. MacLane, S.: Categories for the Working Mathematician. Springer, Berlin Heidelberg New York (1971)

    Google Scholar 

  15. MacLane, S., Moerdijk, I.: Sheaves in Geometry and Logic. Springer, Berlin Heidelberg New York (1992)

    Google Scholar 

  16. Makkai, M.: Strong conceptual completeness for first-order logic. Ann. Pure Appl. Logic 40, 167–215 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  17. Makkai, M.: A theorem on Barr-exact categories with an infinitary generalization. Ann. Pure Appl. Logic 47, 225–268 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  18. Makkai, M., Paré, R.: Accessible categories: the foundations of categorical model theory. Contemp. Math., vol. 104. American Mathematical Society, Providence (1989)

    Google Scholar 

  19. Makkai, M., Reyes, G.: First Order Categorical Logic. Springer Lecture Notes in Mathematics, vol. 611. Springer, Berlin Heidelberg New York (1977)

    Google Scholar 

  20. Moerdijk, I., Vermeulen, J.J.C.: Proof of a conjecture of Pitts. J. PureAppl.Algebra 143, 329–338 (1999)

    Google Scholar 

  21. Prest, M.: Model Theory and Modules. London Math. Soc. Lecture Notes Ser., vol. 130. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  22. Prest, M.: Definable additive categories: Purity and model theory. University of Manchester, Manchester (2008). Available online at http://eprints/ma.man.ac.uk/1097

  23. Prest, M.: Purity, Spectra and Localisation. Cambridge University Press (in press)

  24. Rosický, J., Adámek, J., Borceux, F.: More on injectivity in locally presentable categories. Theory Appl. Categ. 10, 148–161 (2002)

    MATH  MathSciNet  Google Scholar 

  25. Rothmaler, Ph.: Purity in model theory. In: Advances in Algebra and Model Theory, pp. 445–469. Gordon and Breach, New York (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike Prest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajani, R., Prest, M. Model-theoretic Imaginaries and Coherent Sheaves. Appl Categor Struct 17, 517–559 (2009). https://doi.org/10.1007/s10485-008-9151-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-008-9151-6

Keywords

Mathematics Subject Classifications (2000)