Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A fuzzy-tabu real time controller for sampling-based motion planning in unknown environment

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Sampling-based path planning methods for autonomous agents are one of the well-known classes of robotic navigation approaches with significant advantages including ease of implementation and efficiency in problems with high degrees of freedom. However, there are some serious drawbacks like inability to plan in unknown environments, failure in complex workspaces, instability of results in different runs, and generating non-optimal solutions; which make sampling-based planners less efficient in practice. In this paper, a fuzzy controller is proposed which utilizes the heuristic rules of Tabu search to improve the quality of generated samples. The main contribution of this work is the ability of the proposed sampling-based planner to work effectively in unknown environments and to plan efficiently in complex workspaces by letting the fuzzy-Tabu controller check the quality of the generated samples before any further processing. The efficiency of the proposed planner is tested in several workspaces and the comparison studies show significant improvement in runtime and failure rate. Furthermore, the decision variables of the proposed controller are discussed in detail to determine their effect on the performance of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Canny J (1988) The complexity of robot motion planning. The MIT Press, Massachusetts

    Google Scholar 

  2. Asano T, Asano T, Guibas L, Hershberger J, Imai H (1985) Visibility-polygon search and Euclidean shortest paths. In: Proceedings of 26th Annual Symposium on Foundations of Computer Science, Oct 21-23, Portland, USA, 155-164

  3. Canny J (1985) Voronoi method for the piano-mover’s problem. In: Proceedings of IEEE International Conference on Robotics and Automation. Mar 25-28, St. Louis, USA, pp 530-535

  4. Khatib O (1986) Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. Int J Rob Res 5:90–99. doi:10.1177/027836498600500106

    Article  Google Scholar 

  5. Lumelsky VJ, Stepanov AA (1987) Path-planning strategies for a point mobile automaton moving amidst unknown obstacles for arbitrary shape. Algorithmica 2:403–430. doi:10.1007/BF01840369

    Article  MathSciNet  MATH  Google Scholar 

  6. Khaksar W, Tang SH, Khaksar M, Motlagh O (2013) A Low Dispersion Probabilistic Roadmaps (LD-PRM) Algorithm for Fast and Efficient Sampling-Based Motion Planning. Int J Adv Robot Syst 10:397. doi:10.5772/56973

    Google Scholar 

  7. Ryan MRK (2008) Exploiting Subgraph Structure in Multi-Robot Path Planning. J Artif Intell Res 31:497–542. doi:10.1613/jair.2408

    MATH  Google Scholar 

  8. Nash A, Koenig S, Felner A, Daniel K (2010) Theta*: Any-Angle Path Planning on Grids. J Artif Intell Res 39:533–579. doi:10.1613/jair.2994

    MathSciNet  MATH  Google Scholar 

  9. Tang SH, Khaksar W, Ismail NB, Ariffin MK A (2012) A Review on Robot Motion Planning Approaches. Pertanika J Sci & Technol 20:15–29

    Google Scholar 

  10. Khaksar W, Tang SH, Khaksar M, Motlagh O (2012) Sampling-Based Tabu Search Approach for Online Path Planning. Adv Robot 26:1013–1034. doi:10.1163/156855312X632166

    Google Scholar 

  11. Hoang HV, Viet-Hung D, Md Nasir UL, TaeChoong C (2013) BA*: an online complete coverage algorithm for cleaning robots. Appl Intell 39:217–235. doi:10.1007/s10489-012-0406-4

    Article  Google Scholar 

  12. Kala R, Warwick K (2014) Dynamic distributed lanes: motion planning for multiple autonomous vehicles. Appl Intell. doi:10.1007/s10489-014-0517-1

  13. Kawraki LE, Svestka P, Latombe JC, Overmars MH (1996) Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans Robot Autom 12:566–580. doi:10.1109/70.508439

    Article  Google Scholar 

  14. Lavalle SM (1998) Rapidly-exploring random trees: A new tool for path planning. Technical Report TR 98-11, Computer Science Department, Iowa State University

    Google Scholar 

  15. Karaman S (2013) Sampling-based algorithms for optimal motion planning. Int J Rob Res 30:846–894. doi:10.1177/0278364911406761

    Article  Google Scholar 

  16. Lavalle SM (2006) Planning Algorithms. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  17. Choset H, Lynch KM, Hutchinson S, Kantor G, Burgard W, Kavraki LE, Thrun S (2005) Principles of robot motion-theory: algorithms, and implementation. MIT Press, Cambridge

    Google Scholar 

  18. Boor V, Overmars MH, Van der Stappen AF (1999) The Gaussian sampling strategy for probabilistic roadmap planners. In:Proceedings of IEEE International Conference on Robotics and Automation, May 10-15, Detroit, USA, pp 1018–1023

  19. Branicky MS, LaValle SM, Olson K, Libo Y, Quasi-randomized path planning Proceedings of IEEE International Conference on Robotics and Automation. May 21-26 COEX Seoul Korea (2001)

  20. Kurniawati H, Hsu D (2004) Workspace importance sampling for probabilistic roadmap planning. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sep 28-Oct 2. Sendai, Japan, pp 1618–1623

    Google Scholar 

  21. Hsu D, Sanchez-Ante G, Zheng S (2005) Hybrid PRM Sampling with a Cost-Sensitive Adaptive Strategy. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). Aug 2-6. Alberta, Canada, pp 3874–3880

    Google Scholar 

  22. Hsu D, Tingting J, Reif J, Zheng S (2003) The bridge test for sampling narrow passages with probabilistic roadmap planners. In Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Oct, Las Vegas, Nevada, pp 4420–4426

  23. Yershova KA, Jaillet L, Simoen T, LaValle SM (2005) Dynamic Domain RRTs: Efficient exploration by controlling the sampling domain. In: Proceedings of IEEE International Conference on Robotics and Automation, April, Barcelona, Spain, pp 3856-3861

  24. Jaillet L, Yershova A, LaValle SM, Simeon T (2005) Adaptive tuning of the sampling domain for Dynamic-Domain RRTs. In: Proceedings of IEEE International Conference on Robotics and Automation, April, Barcelona, Spain, pp 2851-2856

  25. Ferguson D, Kalra N, Stentz A (2006) Replanning with RRTs. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pp. 1243-1248

  26. Bruce J, Veloso M (2002) Real-time randomized path planning for robot navigation. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. pp 2383-2388

  27. BekrisK E, Kavraki LE (2007) Greedy but Safe Replanning under Kinodynamic Constraints. In: Proceedings of IEEE International Conference on Robotics and Automation, Roma, Italy, 704-710

  28. Glover F (1989) Tabu Search-Part I. ORSA J on Comput 1:190–206. doi:10.1287/ijoc.1.3.190

    Article  MathSciNet  MATH  Google Scholar 

  29. Glover F (1990) Tabu Search-Part II. ORSA J on Comput 2:4–32. doi:10.1287/ijoc.1.3.190

    Article  MATH  Google Scholar 

  30. Whitley LD, Howe AE, Watson JP (2004) Linking Search Space Structure, Run-Time Dynamics, and Problem Difficulty: A Step Toward Demystifying Tabu Search. J Artif Intell Res 24:221–261. doi:10.1613/jair.1576

    Google Scholar 

  31. Masehian E, Amin-Naseri MR (2008) Sensor-based robot motion planning - A Tabu search approach. IEEE Robot & Autom Mag 15:48–57. doi:10.1109/MRA.2008.921543

    Article  Google Scholar 

  32. Hedar AR, Ali AF (2012) Tabu search with multi-level neighborhood structures for high dimensional problems. Appl Intell 37:189–206. doi:10.1007/s10489-011-0321-0

    Article  Google Scholar 

  33. Salt SM, Arafeh AM (2014) Cell assignment in hybrid CMOS/nanodevices architecture using Tabu Search. Appl Intell 40:1–12. doi:10.1007/s10489-013-0441-9

    Article  Google Scholar 

  34. Hong TL, Sheu HC, HE YK (2002) Multicriteria scheduling using fuzzy theory and tabu search. Int J Prod Res 40:1221–1234. doi:10.1080/00207540110098832

  35. Li C, Liao X, Yu J (2004) Tabu search for fuzzy optimization and applications. Inform Sci 158:3–13. doi:10.1016/j.ins.2003.07.015

  36. Zheng Y (2010) Extended tabu search on fuzzy traveling salesman problem in multi-criteria analysis. In: Chen B (ed) Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, pp 314–324

  37. Talbi N, Belarbi K (2011) Optimization of fuzzy controller using tabu search and particle swarm optimization. In: International Conference on Hybrid Intelligent Systems (HIS). Dec 5–8, Malaca, Malaysia, pp 561–565

  38. Bjork KM, Mezei J (2013) A fuzzy tabu search approach to solve a vehicle routing problem. In: Hutchison D (ed) Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, pp 210–217

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weria Khaksar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaksar, W., Hong, T.S., Khaksar, M. et al. A fuzzy-tabu real time controller for sampling-based motion planning in unknown environment. Appl Intell 41, 870–886 (2014). https://doi.org/10.1007/s10489-014-0572-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-014-0572-7

Keywords