Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A modified combination rule in generalized evidence theory

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Dempster-Shafer evidence theory is an efficient tool used in knowledge reasoning and decision-making under uncertain environments. Conflict management is an open issue in Dempster-Shafer evidence theory. There is no good practice that can be generally accepted until the presence of generalized evidence theory (GET). GET addresses conflict management in an open world, where the frame of discernment (FOD) is incomplete since uncertainty and lacking knowledge. With the in-depth study, however, the original generalized combination rule (GCR) still has its issue. As an example, based on the original GCR, the system judges whether the FOD is complete or not even though the GBPAs clearly indicate that the proposition is outside of FOD. In this paper, we proposed a modified generalized combination rule (mGCR) in the framework of GET. The mGCR satisfies all properties of GCR in GET, illustrating and modeling the real world more reasonably than the original. Numerical examples demonstrate that mGCR combines GBPAs effectively and has more distinct geometric and physical meaning than the original GCR. Several experiments using real data sets are presented at the end of this paper to evaluate the effectiveness of mGCR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. Shafer performed the method in Chapter III of his famous monograph A mathematical theory of evidence[30]

  2. UCI Machine Learning Repository: http://archive.ics.uci.edu/ml/datasets/Iris

  3. UCI Machine Learning Repository: http://archive.ics.uci.edu/ml/datasets/seeds#

References

  1. Bagheri E, Zafarani R, Ebrahimi M (2009) Can reputation migrate? on the propagation of reputation in multi-context communities. Knowl-Based Syst 22(6):410–420

    Article  Google Scholar 

  2. Chin KS, Fu C (2015) Weighted cautious conjunctive rule for belief functions combination. Inf Sci 325:70–86

    Article  MathSciNet  Google Scholar 

  3. Cuzzolin F (2008) A geometric approach to the theory of evidence. IEEE Trans Syst Man Cybern Part C: Appl Rev 38(4):522–534

    Article  Google Scholar 

  4. Dempster A (1967) Upper and lower probabilities induced by multivalued mapping. Ann Math Stat 38 (2):325–339

    Article  MathSciNet  MATH  Google Scholar 

  5. Deng X, Hu Y, Deng Y, Mahadevan S (2014) Supplier selection using AHP methodology extended by D numbers. Expert Syst Appl 41(1):156–167

    Article  Google Scholar 

  6. Deng Y (2015) Generalized evidence theory. Appl Intell 43(3):530–543

    Article  Google Scholar 

  7. Deng Y (2016) Deng entropy. Chaos, Solitons Fractals 91:549–553

    Article  Google Scholar 

  8. Deng Y (2017) Fuzzy analytical hierarchy process based on canonical representation on fuzzy numbers. J Comput Anal Appl 22(2):201–228

    Google Scholar 

  9. Deng Y, Liu Y, Zhou D (2015) An improved genetic algorithm with initial population strategy for symmetric TSP. Math Problems Eng 2015:212,794. doi:10.1155/2015/212794

    Google Scholar 

  10. Dubios D, Prade H (1994) A survey of belief revision and updating rules in various uncertainty models. Int J Intell Syst 9(1):61–100

    Article  MathSciNet  MATH  Google Scholar 

  11. Fisher R (1936) The use of multiple measurements in taxonomic problems. Ann Hum Genet 7(2):179–188

    Google Scholar 

  12. Fu C, Chin KS (2014) Robust evidential reasoning approach with unknown attribute weights. Knowl-Based Syst 59(2):9–20

    Article  Google Scholar 

  13. Fu C, Yang S (2012) An evidential reasoning based consensus model for multiple attribute group decision analysis problems with interval-valued group consensus requirements. Eur J Oper Res 223(1):167–176

    Article  MathSciNet  MATH  Google Scholar 

  14. JiangW,Wei B, Qin X, Zhan J, Tang Y (2016a) Sensor data fusion based on a new conflict measure. Math Probl Eng 2016, Article ID 5769061:11 pages, doi:10.1155/2016/5769061

  15. Jiang W, Wei B, Xie C, Zhou D (2016b) An evidential sensor fusion method in fault diagnosis. Adv Mech Eng 8(3):1–7. doi:10.1177/1687814016641820

    Article  Google Scholar 

  16. Jiang W, Xie C, Wei B, Zhou D (2016) A modified method for risk evaluation in failure modes and effects analysis of aircraft turbine rotor blades. Adv Mech Eng 8(4):1–16. doi:10.1177/1687814016644579

    Article  Google Scholar 

  17. Jiang W, Zhan J, Zhou D, Li X (2016d) A method to determine generalized basic probability assignment in the open world. Math Probl Eng 2016, Article ID 3878634:11 pages, doi:10.1155/2016/3878634

  18. Jiang W, Zhuang M, Qin X, Tang Y (2016e) Conflicting evidence combination based on uncertainty measure and distance of evidence. SpringerPlus 5(1):1–11. doi:10.1186/s40064-016-2863-4

    Article  Google Scholar 

  19. Kang B, Deng Y, Sadiq R, Mahadevan S (2012) Evidential cognitive maps. Knowl-Based Syst 35:77–86

    Article  Google Scholar 

  20. Li M, Lu X, Zhang Q, Deng Y (2014) Multiscale probability transformation of basic probability assignment. Math Probl Eng 2014, doi:10.1155/2014/319264

  21. Liu HC, You JX, Fan XJ, Lin QL (2014a) Failure mode and effects analysis using d numbers and grey relational projection method. Expert Syst Appl 41(10):4670–4679

    Article  Google Scholar 

  22. Liu W (2006) Analyzing the degree of conflict among belief functions. Artif Intell 170(11):909–924

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu YZ, Jiang YC, Liu X, Yang SL (2008) A combination strategy for multiclass classification based on multiple association rules. Knowl-Based Syst 21(8):786–793

    Article  Google Scholar 

  24. Liu ZG, Pan Q, Dezert J (2014a) A belief classification rule for imprecise data. Appl Intell 40(2):214–228. doi:10.1007/s10489-013-0453-5

  25. Lolli F, Ishizaka A, Gamberini R, Rimini B, Messori M (2015) Flowsort-gdss -a novel group multi-criteria decision support system for sorting problems with application to fmea. Expert Syst Appl 42:6342–6349

    Article  Google Scholar 

  26. Ma J, Liu W, Miller P, Zhou H (2016) An evidential fusion approach for gender profiling. Inf Sci 333:10–20

    Article  Google Scholar 

  27. Niu D,Wei Y, Shi Y, Karimi HR (2012) A novel evaluation model for hybrid power system based on vague set and dempster-shafer evidence theory. Math Probl Eng doi:10.1155/2012/784389

  28. Rikhtegar N, Mansouri N, Oroumieh AA, Yazdani-Chamzini A, Zavadskas EK, Kildien? S (2014) Environmental impact assessment based on group decision-making methods in mining projects. Econ Res 27(1):378–392

  29. RYager R, Alajlan N (2013) Decision making with ordinal payoffs under dempster-shafer type uncertainty. Int J Intell Syst 28(11):1039–1053

    Article  Google Scholar 

  30. Shafer G (1976) A mathematical theory of evidence. Princeton University Press, New Jersey

  31. Shafer G (2015) Dempster’s rule of combination. Int J Approx Reason doi:10.1016/j.ijar.2015.12.009

  32. Smets P, Kennes R (1994) The transferable belief model. Artif Intell 66(2):191–234

    Article  MathSciNet  MATH  Google Scholar 

  33. Su X, Mahadevan S, Han W, Deng Y (2015a) Combining dependent bodies of evidence. Appl Intell doi:10.1007/s10489-015-0723-5

  34. Su X, Mahadevan S, Xu P, Deng Y (2015b) Dependence assessment in Human Reliability Analysis using evidence theory and AHP. Risk Anal 35:1296–1316

    Article  Google Scholar 

  35. Tang Y, Zhou D, Jiang W (2016) A new fuzzy-evidential controller for stabilization of the planar inverted pendulum system. PloS ONE 11(8):e0160,416. doi:10.1371/journal.pone.0160416

    Article  Google Scholar 

  36. Wang P (2008) The reliable combination rule of evidence in Dempster-Shafer theory. Proc-1st Int Congress Image Signal Process, CISP 2008 2:166–170. doi:10.1109/CISP.2008.602

    Article  Google Scholar 

  37. Xu PD, Su XY, Mahadevan S, Li CZ, Deng Y (2014) A non-parametric method to determine basic probability assignment for classification problems. Appl Intell 41:681–693

    Article  Google Scholar 

  38. Yager RR (1987) On the dempster-shafer framework and new combination rules. Inf Sci 41(2):93 – 137. doi:10.1016/0020-0255(87)90007-7

    Article  MathSciNet  MATH  Google Scholar 

  39. Yang J, Xu D (2013) Evidential reasoning rule for evidence combination. Artif Intell 205:1–29

    Article  MathSciNet  MATH  Google Scholar 

  40. Yang Y, Han D (2016) A new distance-based total uncertainty measure in the theory of belief functions. Knowl-Based Syst 94:114–123

    Article  Google Scholar 

  41. Zadeh L (1986) A simple view of the dempter-shafer theory of evidence and its implication for the rule of combination. AI Mag 7(1):34–38

    Google Scholar 

  42. Zhao X, Wang R, Gu H, Song G, Mo Y (2014) Innovative data fusion enabled structural health monitoring approach. Math Probl Eng 2014,. doi:http://dx.doi.org/10.1155/2014/369540

Download references

Acknowledgments

We greatly appreciate the editor’s encouragement and the anonymous reviewers’ valuable comments and suggestions to improve this paper. The work is partially supported by National Natural Science Foundation of China (Grant No. 61671384), Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2016JM6018), the Fund of SAST (Program No. SAST2016083), the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University (Program No. Z2016122).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, W., Zhan, J. A modified combination rule in generalized evidence theory. Appl Intell 46, 630–640 (2017). https://doi.org/10.1007/s10489-016-0851-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-016-0851-6

Keywords