Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Multi-objective evolutionary algorithm based on decision space partition and its application in hybrid power system optimisation

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The distribution of individuals in a population significantly influences convergence to global optimal solutions. However, determining how to maximise decision space information, which benefits convergence, is disregarded. This paper proposes a type of multi-objective evolutionary algorithm based on decision space partition (DSPEA), and designs the sphere initialisation strategies, initialisation method of individuals in each sphere, updating approach for the centroid, radius, and individuals of a hypersphere, and information sharing mechanism among spheres. The decision space in the DSPEA framework is explicitly divided into several hyperspheres. The non-dominated sorting genetic algorithm II is employed to implement each evolution of each hypersphere. An improvement approach related to the information sharing of the spheres is used to produce the future motions of the spheres by adopting particle swarm optimisation. Twelve problems were used to test the performance of DSPEA, and extensive experimental results show that DSPEA performs better than six state-of-the-art multi-objective evolutionary algorithms. Finally, DSPEA is used to optimise a hybrid power system. The results of the simulation optimisation tests on the parameters of the control strategy and the drive system for hybrid electric vehicles demonstrate that the proposed approach can obtain a set of improved solutions with low fuel consumption and pollutant emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bui LT, Abbass HA, Essam D (2009) Localization for solving noisy multi-objective optimization problems. Evol Comput 17(3):379–409

    Article  Google Scholar 

  2. Cheng P, Lee I, Lin CW, Pan JS (2016) Association rule hiding based on evolutionary multi-objective optimization. Intell Data Anal 20(3):495–514

    Article  Google Scholar 

  3. Coello CC, Lechuga MS (2002) Mopso: a proposal for multiple objective particle swarm optimization. In: Proceedings of the 2002 congress on evolutionary computation, 2002. CEC’02, vol 2. IEEE, pp 1051–1056

  4. Corne DW, Jerram NR, Knowles JD, Oates MJ et al (2001) Pesa-ii: region-based selection in evolutionary multiobjective optimization. In: Proceedings of the genetic and evolutionary computation conference (GECCO2001, Citeseer)

  5. Deb K (2014) Multi-objective optimization. In: Search methodologies, Springer, pp 403–449

  6. Deb K, Jain H (2014) An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints. IEEE Trans Evol Comput 18(4):577–601

    Article  Google Scholar 

  7. Deb K, Jain S (2002) Running performance metrics for evolutionary multi-objective optimization

  8. Deb K, Pratap A, Agarwal S, Meyarivan T (2002a) A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  9. Deb K, Thiele L, Laumanns M, Zitzler E (2002b) Scalable multi-objective optimization test problems. In: Proceedings of the 2002 congress on evolutionary computation, 2002. CEC’02, vol 1. IEEE, pp 825–830

  10. Dioṡan L, Andreica A (2015) Multi-objective breast cancer classification by using multi-expression programming. Appl Intell 43(3):499–511. doi:10.1007/s10489-015-0668-8

    Article  Google Scholar 

  11. Eskandari H, Geiger C, Lamont G (2007) Fastpga: a dynamic population sizing approach for solving expensive multiobjective optimization problems. In: Evolutionary multi-criterion optimization. Springer, pp 141–155

  12. Gacto MJ, Alcalá R, Herrera F (2012) A multi-objective evolutionary algorithm for an effective tuning of fuzzy logic controllers in heating, ventilating and air conditioning systems. Appl Intell 36(2):330–347

    Article  Google Scholar 

  13. Giel O, Lehre PK (2010) On the effect of populations in evolutionary multi-objective optimisation. Evol Comput 18(3):335–356

    Article  Google Scholar 

  14. Guanci Y, Shaobo L, Jinglei Q, Guanqi G, Yong Z (2012a) Multi-objective optimization of hybrid electrical vehicle based on pareto optimality. Shanghai Jiaotong Daxue Xuebao/J Shanghai Jiaotong Univ 46(8):1297–1303

    Google Scholar 

  15. Guanci Y, Shaobo L, Xianghong T, Jinglei Q, Yong Z (2012b) Control strategy parameter analysis of parallel hybrid electric vehicles based on multiindex orthogonal experiment. J Comput Appl 32(11):3047–3053

    Google Scholar 

  16. Guanci Y, Shaobo L, Yong Z (2012c) Probability analysis of capturing specific objects in stratified sampling model. J Comput Appl 32(08):2209–2211

    Google Scholar 

  17. Guanci Y, Shaobo L, Yong Z, Zhengchao P (2012d) Multi-objective evolutionary algorithm based on decision space partition. Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/J Huazhong Univ Sci Technol (Nat Sci Edn) 12:49–54

    Google Scholar 

  18. Kennedy J (2011) Particle swarm optimization. In: Encyclopedia of machine learning. Springer, pp 760–766

  19. Kukkonen S, Lampinen J (2005) Gde3: the third evolution step of generalized differential evolution. In; 2005 IEEE congress on evolutionary computation, vol 1. IEEE, pp 443–450

  20. von Lücken C, Barán B, Brizuela C (2014) A survey on multi-objective evolutionary algorithms for many-objective problems. Comput Optim Appl 58(3):707–756

    MathSciNet  MATH  Google Scholar 

  21. Maoguo G, Licheng J, Dongdong Y, Wenping M (2009) Research on evolutionary multi-objective optimization algorithms. Ruan Jian Xue Bao/J Softw 20(2):271–289

    MathSciNet  MATH  Google Scholar 

  22. Markel T, Brooker A, Hendricks T, Johnson V, Kelly K, Kramer B, OKeefe M, Sprik S, Wipke K (2002) Advisor: a systems analysis tool for advanced vehicle modeling. J Power Sour 110(2):255–266

    Article  Google Scholar 

  23. Nebro AJ, Durillo JJ, Luna F, Dorronsoro B, Alba E (2009) Mocell: a cellular genetic algorithm for multiobjective optimization. Int J Intell Syst 24(7):726–746

    Article  MATH  Google Scholar 

  24. Neyman J (1934) On the two different aspects of the representative method: the method of stratified sampling and the method of purposive selection. J R Stat Soc 97(4):558–625

    Article  MATH  Google Scholar 

  25. Robič T, Filipič B (2005) Demo: differential evolution for multiobjective optimization. In: International conference on evolutionary multi-criterion optimization. Springer, pp 520– 533

  26. Schott JR (1995) Fault tolerant design using single and multicriteria genetic algorithm optimization. Tech. rep., DTIC Document

  27. Wang Y, Li HX, Yen GG, Song W (2015) Mommop: multiobjective optimization for locating multiple optimal solutions of multimodal optimization problems. IEEE Trans Cybern 45(4):830–843

    Article  Google Scholar 

  28. Weisstein EW (2015) Spherical coordinates. http://mathworld.wolfram.com/SphericalCoordinates.html, accessed: 2015-09-30

  29. Yang XS (2013) Multiobjective firefly algorithm for continuous optimization. Eng Comput 29(2):175–184

    Article  Google Scholar 

  30. Zhang Q, Li H (2007) Moea/d: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731

    Article  Google Scholar 

  31. Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: empirical results. Evol Comput 8(2):173–195

    Article  Google Scholar 

  32. Zitzler E, Laumanns M, Thiele L et al (2001) Spea2: improving the strength pareto evolutionary algorithm. In: Eurogen, vol 3242, pp 95–100

Download references

Acknowledgments

This work has been supported by National Natural Science Foundation of China (61540066 and 51475097), Science and Technology Foundation of Guizhou Province (R[2015]13, JZ[2014]2004, JZ[2014]2001, ZDZX[2013]6020, G[2014]4001, ZDZX[2014]6021), Science and Technology Foundation of Guizhou Province (J[2013]2127), Torch Program projects of Guizhou Province ([2013]5051), and National Key Technology Support Program of China (2012BAH62F00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanci Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., Zhang, A., Li, S. et al. Multi-objective evolutionary algorithm based on decision space partition and its application in hybrid power system optimisation. Appl Intell 46, 827–844 (2017). https://doi.org/10.1007/s10489-016-0864-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-016-0864-1

Keywords