Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Evolutionary dynamic grouping based cooperative co-evolution algorithm for large-scale optimization

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

To effectively address large-scale optimization problems, this paper proposes an evolutionary dynamic grouping (EDG) based cooperative co-evolution (CC) algorithm. In the proposed algorithm, a novel decomposition method is designed to generate the sub-components of decision variables dynamically. Additionally, an evolutionary search method based on the fireworks search strategy is proposed to enhance the searchability of the algorithm. The performance of the proposed algorithm is assessed using two benchmark suites, IEEE CEC’2010 and IEEE CEC’2013, as well as a real-world optimization problem, the 0/1 Knapsack Problem (KP). Experimental results demonstrate that the proposed algorithm achieves competitive results when compared with other state-of-the-art algorithms.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Algorithm 2
Fig. 3
Algorithm 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Goh SK, Tan KC, Al-Mamun A, Abbass HA (2015) Evolutionary big optimization (bigopt) of signals. In: 2015 IEEE congress on evolutionary computation (CEC). IEEE, pp 3332–3339. https://doi.org/10.1109/CEC.2015.7257307

  2. Wang Y, Zhang Q, Wang GG (2023) Improving evolutionary algorithms with information feedback model for large-scale many-objective optimization. Appl Intell 53(10):11439–11473. https://doi.org/10.1007/s10489-022-03964-9

    Article  Google Scholar 

  3. Omidvar MN, Li X, Yao X (2021) A review of population-based metaheuristics for large-scale black-box global optimization-part i. IEEE Trans Evol Comput 26(5):802–822. https://doi.org/10.1109/TEVC.2021.3130838

    Article  Google Scholar 

  4. Omidvar MN, Li X, Yao X (2021) A review of population-based metaheuristics for large-scale black-box global optimization-part ii. IEEE Trans Evol Comput 26(5):823–843. https://doi.org/10.1109/TEVC.2021.3130835

    Article  Google Scholar 

  5. Caraffini F, Neri F, Iacca G (2017) Large scale problems in practice: the effect of dimensionality on the interaction among variables. In: Applications of evolutionary computation: 20th European Conference, EvoApplications 2017, Amsterdam, The Netherlands, April 19-21, 2017, Proceedings, Part I 20. Springer, pp 636–652

  6. Caraffini F, Neri F, Iacca G, Mol A (2013) Parallel memetic structures. Inf Sci 227:60–82. https://doi.org/10.1016/j.ins.2012.11.017

    Article  MathSciNet  Google Scholar 

  7. Tayarani-N MH, Yao X, Xu H (2014) Meta-heuristic algorithms in car engine design: A literature survey. IEEE Trans Evol Comput 19(5):609–629. https://doi.org/10.1109/TEVC.2014.2355174

    Article  Google Scholar 

  8. Xue B, Zhang M, Browne WN, Yao X (2015) A survey on evolutionary computation approaches to feature selection. IEEE Trans Evol Comput 20(4):606–626. https://doi.org/10.1109/TEVC.2015.2504420

    Article  Google Scholar 

  9. Sun Y, Xiao K, Wang S, Lv Q (2022) An evolutionary many-objective algorithm based on decomposition and hierarchical clustering selection. Appl Intell 1–46. https://doi.org/10.1007/s10489-021-02669-9

  10. Zhang L, Wang L, Pan X, Qiu Q (2023) A reference vector adaptive strategy for balancing diversity and convergence in many-objective evolutionary algorithms. Appl Intell 53(7):7423–7438. https://doi.org/10.1007/s10489-022-03545-w

    Article  Google Scholar 

  11. Abbaszadeh Shahri A, Khorsand Zak M, Abbaszadeh Shahri H (2022) A modified firefly algorithm applying on multi-objective radial-based function for blasting. Neural Comput Appl 1–17. https://doi.org/10.1007/s00521-021-06544-z

  12. Balande U, Shrimankar D (2022) A modified teaching learning metaheuristic algorithm with opposite-based learning for permutation flow-shop scheduling problem. Evol Intell 15(1):57–79. https://doi.org/10.1007/s12065-020-00487-5

    Article  Google Scholar 

  13. Abbaszadeh Shahri A, Kheiri A, Hamzeh A (2021) Subsurface topographic modeling using geospatial and data driven algorithm. ISPRS Int J Geo-Inf 10(5):341. https://doi.org/10.3390/ijgi10050341

    Article  Google Scholar 

  14. Omidvar MN, Li X, Mei Y, Yao X (2013) Cooperative co-evolution with differential grouping for large scale optimization. IEEE Trans Evol Comput 18(3):378–393. https://doi.org/10.1109/TEVC.2013.2281543

    Article  Google Scholar 

  15. LaTorre A, Muelas S, Peña JM (2015) A comprehensive comparison of large scale global optimizers. Inf Sci 316:517–549. https://doi.org/10.1016/j.ins.2014.09.031

    Article  Google Scholar 

  16. Clark M, Ombuki-Berman B, Aksamit N, Engelbrecht A (2022) Cooperative particle swarm optimization decomposition methods for large-scale optimization. In: 2022 IEEE symposium series on computational intelligence (SSCI). IEEE, pp 1582–1591. https://doi.org/10.1109/SSCI51031.2022.10022095

  17. Mahdavi S, Shiri ME, Rahnamayan S (2015) Metaheuristics in large-scale global continues optimization: A survey. Inf Sci 295:407–428. https://doi.org/10.1016/j.ins.2014.10.042

    Article  MathSciNet  Google Scholar 

  18. Peng X, Jin Y, Wang H (2018) Multimodal optimization enhanced cooperative coevolution for large-scale optimization. IEEE Trans Cybern 49(9):3507–3520. https://doi.org/10.1109/TCYB.2018.2846179

    Article  Google Scholar 

  19. Hansen N, Ostermeier A (2001) Completely derandomized self-adaptation in evolution strategies. Evol Comput 9(2):159–195. https://doi.org/10.1162/106365601750190398

    Article  Google Scholar 

  20. Ros R, Hansen N (2008) A simple modification in cma-es achieving linear time and space complexity. In: International conference on parallel problem solving from nature. Springer, pp 296–305. https://doi.org/10.1007/978-3-540-87700-4_30

  21. Molina D, Lozano M, Herrera F (2010) Ma-sw-chains: Memetic algorithm based on local search chains for large scale continuous global optimization. In: IEEE congress on evolutionary computation. IEEE, pp 1–8. https://doi.org/10.1109/CEC.2010.5586034

  22. LaTorre A, Muelas S, Peña JM (2011) A mos-based dynamic memetic differential evolution algorithm for continuous optimization: a scalability test. Soft Comput 15:2187–2199. https://doi.org/10.1007/s00500-010-0646-3

    Article  Google Scholar 

  23. Cheng R, Jin Y (2014) A competitive swarm optimizer for large scale optimization. IEEE Trans Cybern 45(2):191–204. https://doi.org/10.1109/TCYB.2014.2322602

    Article  Google Scholar 

  24. Cheng R, Jin Y (2015) A social learning particle swarm optimization algorithm for scalable optimization. Inf Sci 291:43–60. https://doi.org/10.1016/j.ins.2014.08.039

    Article  MathSciNet  Google Scholar 

  25. Jian JR, Chen ZG, Zhan ZH, Zhang J (2021) Region encoding helps evolutionary computation evolve faster: A new solution encoding scheme in particle swarm for large-scale optimization. IEEE Trans Evol Comput 25(4):779–793. https://doi.org/10.1109/TEVC.2021.3065659

    Article  Google Scholar 

  26. Wang ZJ, Zhan ZH, Yu WJ, Lin Y, Zhang J, Gu TL, Zhang J (2019) Dynamic group learning distributed particle swarm optimization for large-scale optimization and its application in cloud workflow scheduling. IEEE Trans Cybern 50(6):2715–2729. https://doi.org/10.1109/TCYB.2019.2933499

    Article  Google Scholar 

  27. Wang ZJ, Zhan ZH, Kwong S, Jin H, Zhang J (2020) Adaptive granularity learning distributed particle swarm optimization for large-scale optimization. IEEE Trans Cybern 51(3):1175–1188. https://doi.org/10.1109/TCYB.2020.2977956

    Article  Google Scholar 

  28. Ge YF, Yu WJ, Lin Y, Gong YJ, Zhan ZH, Chen WN, Zhang J (2017) Distributed differential evolution based on adaptive mergence and split for large-scale optimization. IEEE Trans Cybern 48(7):2166–2180. https://doi.org/10.1109/TCYB.2017.2728725

    Article  Google Scholar 

  29. Hadi AA, Mohamed AW, Jambi KM (2019) Lshade-spa memetic framework for solving large-scale optimization problems. Complex Intell Syst 5:25–40. https://doi.org/10.1007/s40747-018-0086-8

    Article  Google Scholar 

  30. Koçer HG, Uymaz SA (2021) A novel local search method for lsgo with golden ratio and dynamic search step. Soft Comput 25(3):2115–2130. https://doi.org/10.1007/s00500-020-05284-x

    Article  Google Scholar 

  31. Zhang W, Lan Y et al (2022) A novel memetic algorithm based on multiparent evolution and adaptive local search for large-scale global optimization. Comput Intell Neurosci 2022. https://doi.org/10.1155/2022/3558385

  32. Li Y, Zhao Y, Liu J (2021) Dynamic sine cosine algorithm for large-scale global optimization problems. Expert Syst Appl 177:114950. https://doi.org/10.1016/j.eswa.2021.114950

    Article  Google Scholar 

  33. Chakraborty S, Saha AK, Chakraborty R, Saha M (2021) An enhanced whale optimization algorithm for large scale optimization problems. Knowl-Based Syst 233:107543. https://doi.org/10.1016/j.knosys.2021.107543

    Article  Google Scholar 

  34. Van den Bergh F, Engelbrecht AP (2004) A cooperative approach to particle swarm optimization. IEEE Trans Evol Comput 8(3):225–239. https://doi.org/10.1109/TEVC.2004.826069

    Article  Google Scholar 

  35. Yang Z, Tang K, Yao X (2008) Large scale evolutionary optimization using cooperative coevolution. Inf Sci 178(15):2985–2999. https://doi.org/10.1016/j.ins.2008.02.017

    Article  MathSciNet  Google Scholar 

  36. Yang Z, Tang K, Yao X (2008b) Multilevel cooperative coevolution for large scale optimization. In: 2008 IEEE congress on evolutionary computation (IEEE World Congress on Computational Intelligence). IEEE, pp 1663–1670. https://doi.org/10.1109/CEC.2008.4631014

  37. Omidvar MN, Li X, Yao X (2010) Cooperative co-evolution with delta grouping for large scale non-separable function optimization. In: IEEE congress on evolutionary computation. IEEE, pp 1–8. https://doi.org/10.1109/CEC.2010.5585979

  38. Sun Y, Kirley M, Halgamuge SK (2015) Extended differential grouping for large scale global optimization with direct and indirect variable interactions. In: Proceedings of the 2015 annual conference on genetic and evolutionary computation, pp 313–320. https://doi.org/10.1145/2739480.2754666

  39. Mei Y, Omidvar MN, Li X, Yao X (2016) A competitive divide-and-conquer algorithm for unconstrained large-scale black-box optimization. ACM Trans Math Softw (TOMS) 42(2):1–24. https://doi.org/10.1145/2791291

    Article  MathSciNet  Google Scholar 

  40. Omidvar MN, Yang M, Mei Y, Li X, Yao X (2017) Dg2: A faster and more accurate differential grouping for large-scale black-box optimization. IEEE Trans Evol Comput 21(6):929–942. https://doi.org/10.1109/TEVC.2017.2694221

    Article  Google Scholar 

  41. Sun Y, Kirley M, Halgamuge SK (2017) A recursive decomposition method for large scale continuous optimization. IEEE Trans Evol Comput 22(5):647–661. https://doi.org/10.1109/TEVC.2017.2778089

    Article  Google Scholar 

  42. Chen A, Ren Z, Guo W, Liang Y, Feng Z (2022) An efficient adaptive differential grouping algorithm for large-scale black-box optimization. IEEE Trans Evol Comput. https://doi.org/10.1109/TEVC.2022.3170793

    Article  Google Scholar 

  43. Omidvar MN, Kazimipour B, Li X, Yao X (2016) Cbcc3–a contribution-based cooperative co-evolutionary algorithm with improved exploration/exploitation balance. In: 2016 IEEE congress on evolutionary computation (CEC). IEEE, pp 3541–3548. https://doi.org/10.1109/CEC.2016.7744238

  44. Kazimipour B, Omidvar MN, Qin AK, Li X, Yao X (2019) Bandit-based cooperative coevolution for tackling contribution imbalance in large-scale optimization problems. Appl Soft Comput 76:265–281. https://doi.org/10.1016/j.asoc.2018.12.007

    Article  Google Scholar 

  45. Yang M, Omidvar MN, Li C, Li X, Cai Z, Kazimipour B, Yao X (2016) Efficient resource allocation in cooperative co-evolution for large-scale global optimization. IEEE Trans Evol Comput 21(4):493–505. https://doi.org/10.1109/TEVC.2016.2627581

    Article  Google Scholar 

  46. Ren Z, Chen A, Wang M, Yang Y, Liang Y, Shang K (2020) Bi-hierarchical cooperative coevolution for large scale global optimization. IEEE Access 8:41913–41928. https://doi.org/10.1109/ACCESS.2020.2976488

    Article  Google Scholar 

  47. Yang M, Zhou A, Li C, Guan J, Yan X (2020) Ccfr2: A more efficient cooperative co-evolutionary framework for large-scale global optimization. Inf Sci 512:64–79. https://doi.org/10.1016/j.ins.2019.09.065

    Article  Google Scholar 

  48. Xu HB, Li F, Shen H (2020) A three-level recursive differential grouping method for large-scale continuous optimization. IEEE Access 8:141946–141957. https://doi.org/10.1109/ACCESS.2020.3013661

    Article  Google Scholar 

  49. Mei Y, Li X, Yao X (2013) Cooperative coevolution with route distance grouping for large-scale capacitated arc routing problems. IEEE Trans Evol Comput 18(3):435–449. https://doi.org/10.1109/TEVC.2013.2281503

    Article  Google Scholar 

  50. Sayed E, Essam D, Sarker R, Elsayed S (2015) Decomposition-based evolutionary algorithm for large scale constrained problems. Inf Sci 316:457–486. https://doi.org/10.1016/j.ins.2014.10.035

    Article  Google Scholar 

  51. Goh CK, Tan KC (2008) A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization. IEEE Trans Evol Comput 13(1):103–127. https://doi.org/10.1109/TEVC.2008.920671

    Article  Google Scholar 

  52. Tan Y, Zhu Y (2010) Fireworks algorithm for optimization. In: Advances in swarm intelligence: first international conference, ICSI 2010, Beijing, China, June 12-15, 2010, Proceedings, Part I 1. Springer, pp 355–364. https://doi.org/10.1007/978-3-642-13495-1_44

  53. Liu J, Zheng S, Tan Y (2014) Analysis on global convergence and time complexity of fireworks algorithm. In: 2014 IEEE Congress on evolutionary computation (CEC). IEEE, pp 3207–3213. https://doi.org/10.1109/CEC.2014.6900652

  54. Zheng S, Tan Y (2013) A unified distance measure scheme for orientation coding in identification. In: 2013 IEEE Third international conference on information science and technology (ICIST). IEEE, pp 979–985. https://doi.org/10.1109/ICIST.2013.6747701

  55. Imran AM, Kowsalya M (2014) A new power system reconfiguration scheme for power loss minimization and voltage profile enhancement using fireworks algorithm. Int J Electr Power Energy Syst 62:312–322. https://doi.org/10.1016/j.ijepes.2014.04.034

    Article  Google Scholar 

  56. Zheng S, Janecek A, Tan Y (2013) Enhanced fireworks algorithm. In: 2013 IEEE congress on evolutionary computation. IEEE, pp 2069–2077. https://doi.org/10.1109/CEC.2013.6557813

  57. Engelbrecht AP (2006) Fundamentals of computational swarm intelligence. John Wiley & Sons Inc

    Google Scholar 

  58. Tang K, Yáo X, Suganthan PN, MacNish C, Chen YP, Chen CM, Yang Z (2007) Benchmark functions for the cec’2010 special session and competition on large-scale global optimization. Nature inspired computation and applications laboratory, USTC, China, vol 24, pp 1–18

  59. Li X, Tang K, Omidvar MN, Yang Z, Qin K, China H (2013) Benchmark functions for the cec 2013 special session and competition on large-scale global optimization. Gene 7(33):8

    Google Scholar 

  60. Yang Z, Tang K, Yao X (2008) Self-adaptive differential evolution with neighborhood search. In: 2008 IEEE congress on evolutionary computation (IEEE World Congress on Computational Intelligence). IEEE, pp 1110–1116. https://doi.org/10.1109/CEC.2008.4630935

  61. Tian Y, Cheng R, Zhang X, Jin Y (2017) Platemo: A matlab platform for evolutionary multi-objective optimization [educational forum]. IEEE Comput Intell Mag 12(4):73–87. https://doi.org/10.1109/MCI.2017.2742868

    Article  Google Scholar 

Download references

Acknowledgements

The authors are supported by the National Nature Science Foundation of China under Grant No.62273080.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianchang Liu.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Liu, J., Tan, S. et al. Evolutionary dynamic grouping based cooperative co-evolution algorithm for large-scale optimization. Appl Intell 54, 4585–4601 (2024). https://doi.org/10.1007/s10489-024-05390-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-024-05390-5

Keywords