Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Appearance-based mapping using minimalistic sensor models

  • Published:
Autonomous Robots Aims and scope Submit manuscript

An Erratum to this article was published on 16 January 2008

Abstract

This paper addresses the problem of localization and map construction by a mobile robot in an indoor environment. Instead of trying to build high-fidelity geometric maps, we focus on constructing topological maps as they are less sensitive to poor odometry estimates and position errors. We propose a modification to the standard SLAM algorithm in which the assumption that the robots can obtain metric distance/bearing information to landmarks is relaxed. Instead, the robot registers a distinctive sensor “signature”, based on its current location, which is used to match robot positions. In our formulation of this non-linear estimation problem, we infer implicit position measurements from an image recognition algorithm. We propose a method for incrementally building topological maps for a robot which uses a panoramic camera to obtain images at various locations along its path and uses the features it tracks in the images to update the topological map. The method is very general and does not require the environment to have uniquely distinctive features. Two algorithms are implemented to address this problem. The Iterated form of the Extended Kalman Filter (IEKF) and a batch-processed linearized ML estimator are compared under various odometric noise models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Briggs, A., Li, Y., Scharstein, D., & Wilder, M. (2006). Robot navigation using 1D panoramic images. In Proceedings of the IEEE international conference on robotics and automation (pp. 2679–2685).

  • Choset, H., & Nagatani, K. (2001). Topological simultaneous localization and mapping (slam): toward exact localization without explicit localization. IEEE Transactions on Robotics and Automation 17(2).

  • Dellaert, F., & Stroupe, A. (2002). Linear 2D localization and mapping for single and multiple robots. In Proceedings of the IEEE international conference on robotics and automation, May 2002.

  • Dissanayake, M. W. M. G., Newman, P., Clark, S., Durrant-Whyte, H. F., & Csorba, M. (2001). A solution to the simultaneous localization and map building (SLAM) problem. IEEE Transactions on Robotics and Automation, 17(3), 229–241.

    Article  Google Scholar 

  • Duckett, T., Marsland, S., & Shapiro, J. (2000). Learning globally consistent maps by relaxation. In Proceedings of the IEEE international conference on robotics and automation (Vol. 4, pp. 3841–3846).

  • Eliazar, A., & Ronald, P. (2006). Hierarchical linear/constant time slam using particle filters for dense maps. In Y. Weiss, B. Schölkopf, & J. Platt (Eds.), Advances in neural information processing systems (Vol. 18, pp. 339–346). Cambridge: MIT Press.

    Google Scholar 

  • Gelb, A. (1994). Applied optimal estimation. Cambridge: MIT Press.

    Google Scholar 

  • Grudic, G., & Mulligan, J. (2005). Topological mapping with multiple visual manifolds. In Proceedings of robotics: science and systems, Cambridge, USA, June 2005.

  • Howard, A., Matarić, M. J., & Sukhatme, G. S. (2002). Localization for mobile robot teams using maximum likelihood estimation. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, EPFL Switzerland, September 2002.

  • Jefferies, M. E., Weng, W., Baker, J. T., Cosgrove, M. C., & Mayo, M. (2003). A hybrid approach to finding cycles in hybrid maps. In Australasian conference on robotics and automation.

  • KLT. (1998). An implementation of the Kanade–Lucas–Tomasi feature tracker. http://robotics.stanford.edu/~birch/klt/.

  • Košecká, J., & Li, F. (2004). Vision based topological Markov localization. In Proceedings of the IEEE international conference on robotics and automation (pp. 1481–1486).

  • Kuipers, B., & Byun, Y.-T. (1991). A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations. Journal of Robotics and Autonomous Systems, 8, 47–63.

    Article  Google Scholar 

  • Kuipers, B. J. (1978). Modeling spatial knowledge. Cognitive Science, 2, 129–153.

    Article  Google Scholar 

  • Leonard, J. J., & Durrant-Whyte, H. F. (1991). Mobile robot localization by tracking geometric beacons. IEEE Transactions on Robotics and automation, 7(3), 376–382.

    Article  Google Scholar 

  • Lowe, D. G. (1999). Object recognition from local scale-invariant features. In Proceedings of the seventh IEEE international conference on computer vision (pp. 1150–1157).

  • Lucas, B. D., & Kanade, T. (1981). An iterative image registration technique with an application to stereo vision. In Proceedings of the international joint conference on artificial intelligence (pp. 674–679).

  • Maybeck, P. S. (1982). Mathematics in science and engineering : Vols. 141–142. Stochastic models, estimation and control. New York: Academic Press.

    MATH  Google Scholar 

  • Montemerlo, M., Thrun, S., Koller, D., & Wegbreit, B. (2003). FastSLAM 2.0: An improved particle filtering algorithm for simultaneous localization and mapping that provably converges. In Proceedings of the sixteenth international joint conference on artificial intelligence (IJCAI), Acapulco, Mexico.

  • Murphy, K. (2002). Dynamic Bayesian networks: representation, inference and learning. PhD thesis, UC Berkeley, Computer Science Division, July 2002.

  • Murphy, K., & Russell, S. (2001). Rao–Blackwellised particle filtering for dynamic Bayesian networks In A. Doucet, N. de Freitas, & N. Gordon (Eds.), Sequential Monte Carlo methods in practice. New York: Springer.

    Google Scholar 

  • Neira, J., & Tardós, J. (2001). Data association in stochastic mapping using the joint compatibility test. IEEE Transactions on Robotics and Automation, 17(6), 890–897.

    Article  Google Scholar 

  • Newman, P., Cole, D., & Ho, K. (2006). Outdoor slam using visual appearance and laser ranging. In Proceedings of the IEEE international conference on robotics and automation (pp. 1180–1187), Orlando, FL, USA, May 2006.

  • Olson, E., Leonard, J., & Teller, S. (2006). Fast iterative optimization of pose graphs with poor initial estimates. In Proceedings of the IEEE international conference on robotics and automation (pp. 2262–2269).

  • Omnitech Robotics International, LLC. (2002). ORIFL190-3: 190 degree field of view fisheye lens for 1/3” image sensor cameras. 2640 South Raritan Circle, Englewood, CO, 80110.

  • Porta, J. M., & Kröse, B. J. A. (2005). Appearance-based concurrent map building and localization. Robotics and Autonomous Systems, 54(2), 2005.

    Google Scholar 

  • Ranganathan, A., & Dellaert, F. (2005). Data driven MCMC for appearance-based topological mapping. In Proceedings of robotics: science and systems, Cambridge, USA, June 2005.

  • Ranganathan, A., & Dellaert, F. (2006). A Rao–Blackwellized particle filter for topological mapping. In Proceedings of the IEEE international conference on robotics and automation (pp. 810–817).

  • Remolina, E., & Kuipers, B. (2004). Towards a general theory of topological maps. Artificial Intelligence, 152(1), 47–104.

    Article  MATH  MathSciNet  Google Scholar 

  • Rybski, P. E. (2003). Building topological maps using minimalistic sensor models. PhD thesis, The University of Minnesota, Minneapolis, July 2003.

  • Rybski, P. E., Stoeter, S. A., Gini, M., Hougen, D. F., & Papanikolopoulos, N. (2002). Performance of a distributed robotic system using shared communications channels. IEEE Transactions on Robotics and Automation, 22(5), 713–727.

    Article  Google Scholar 

  • Rybski, P., Zacharias, F., Gini, M., & Papanikolopoulos, N. (2005). Using visual features for building and localizing within topological maps of indoor environments. In S. Patnaik, L. C. Jain, & S. G. Tzafestas (Eds.), Innovations in robot mobility and control (Vol. 8, pp. 251–271). Berlin: Springer.

    Google Scholar 

  • Shatkay, H., & Kaelbling, L. (1997). Learning topological maps with weak local odometric information. In Proceedings of the fifteenth international joint conference on artificial intelligence (pp. 920–927). San Mateo: Kaufmann.

    Google Scholar 

  • Sim, R., & Dudek, G. (2001). Learning environmental features for pose estimation. Image and Vision Computing, 19(11), 733–739.

    Article  Google Scholar 

  • Smith, R., Self, M., & Cheeseman, P. (1990). Estimating uncertain spatial relationships in robotics. In I. J. Cox, & G. T. Wilfong (Eds.), Autonomous robot vehicles (pp. 167–193). Berlin: Springer.

    Google Scholar 

  • Tapus, A., & Siegwart, R. (2006). A cognitive modeling of space using fingerprints of places for mobile robot navigation. In Proceedings of the IEEE international conference on robotics and automation (pp. 1188–1193), Orlando, FL, USA, May 2006.

  • Tapus, A., Ramel, G., Dobler, L., & Siegwart, R. (2004). Topology learning and place recognition using Bayesian programming for mobile robot navigation. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, Sendai, Japan, September 2004.

  • Thrun, S., Burgard, W., & Fox, D. (1998). A probabilistic approach to concurrent mapping and localization for mobile robots. Machine Learning, 31, 29–53.

    Article  MATH  Google Scholar 

  • Thrun, S., Fox, D., Burgard, W., & Dellaert, F. (2000). Robust Monte Carlo localization for mobile robots. Artificial Intelligence, 101, 99–141.

    Google Scholar 

  • Tomasi, C., & Kanade, T. (1991). Detection and tracking of point features (Technical report). School of Computer Science, Carnegie Mellon University, April 1991.

  • Ulrich, I., & Nourbakhsh, I. (2000). Appearance-based place recognition for topological localization. In Proceedings of the IEEE international conference on robotics and automation (pp. 1023–1029), San Francisco, CA, April 2000.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul E. Rybski.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10514-008-9085-8

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rybski, P.E., Roumeliotis, S., Gini, M. et al. Appearance-based mapping using minimalistic sensor models. Auton Robot 24, 229–246 (2008). https://doi.org/10.1007/s10514-007-9067-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-007-9067-2

Keywords