Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Optimal spatial formation of swarm robotic gas sensors in odor plume finding

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Finding the best spatial formation of stationary gas sensors in detection of odor clues is the first step of searching for olfactory targets in a given space using a swarm of robots. Considering no movement for a network of gas sensors, this paper formulates the problem of odor plume detection and analytically finds the optimal spatial configuration of the sensors for plume detection, given a set of assumptions. This solution was analyzed and verified by simulations and finally experimentally validated in a reduced scale realistic environment using a set of Roomba-based mobile robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Explore related subjects

Find the latest articles, discoveries, and news in related topics.

Notes

  1. ANSYS Fluent CFD, “FLUENT user’s manual” Software Release, vol. 6, 2006.

  2. http://www.irobot.com.

  3. http://www.ros.org.

  4. http://www.ros.org/wiki/amcl.

  5. http://www.ros.org/wiki/wifi_comm.

  6. http://www.e2v.com.

  7. http://www.figarosensor.com.

References

  • Arshak, K., Moore, E., Lyons, G., Harris, J., & Clifford, S. (2004). A review of gas sensors employed in electronic nose applications. Sensor Review, 24(2), 181–198.

    Article  Google Scholar 

  • Balkovsky, E., & Shraiman, B. (2002). Olfactory search at high Reynolds number. Proceedings of National Academy of Science, 99(20), 12589–12593.

    Google Scholar 

  • Briggs, G. (1973). Diffusion estimation for small emissions ATDL, contribution file No. 97. Oak Ridge, TN: Air Resources Atmospheric Turbulence and Diffusion Laboratory, NOAA.

    Book  Google Scholar 

  • Cheng, K., Acevedo-Bolton, V., Jiang, R., Klepeis, N., Ott, W., Fringer, O., & Hildemann, L. (2011). Modeling exposure close to air pollution sources in naturally ventilated residences: Association of turbulent diffusion coefficient with air change rate. Environmental science & technology, 45, 4016–4022.

    Google Scholar 

  • Crimaldi, J., Wiley, M., & Koseff, J. (2002). The relationship between mean and instantaneous structure in turbulent passive scalar plumes. Journal of Turbulence, 3(14), 1–24.

    MathSciNet  Google Scholar 

  • Cui, X., Hardin, C., Ragade, R., & Elmaghraby, A. (2004). A swarm approach for emission sources localization. In IEEE International Conference on Tools with Artificial Intelligence, FL, USA.

  • Dunbabin, M., & Marques, L. (2012). Robotics for environmental monitoring: Significant advancements and applications. IEEE Robotics and Automation Magazine, 19(1), 24–39.

    Google Scholar 

  • Ferri, G., Caselli, E., Mattoli, V., Mondini, A., Mazzolai, B., & Dario, P. (2009). SPIRAL: A novel biologically-inspired algorithm for gas/odor source localization in an indoor environment with no strong airflow. Robotics and Autonomous Systems, 57(4), 393–402.

    Article  Google Scholar 

  • Fu, H.-L., Chen, H.-C., & Lin, P. (2012). APS: Distributed air pollution sensing system on wireless sensor and robot networks. Computer Communications, 35(9), 1141–1150.

    Article  Google Scholar 

  • Gazi, V., & Passino, K. (2004). Stability analysis of social foraging swarms. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 34(1), 539–557.

    Article  Google Scholar 

  • Gifford, F. (1960). Peak to average concentration ratios according to a fluctuating plume dispersion model. International Journal of Air Pollution, 3, 253.

    Google Scholar 

  • Grasso, F., Dale, J., Consi, T., Mountain, D., & Atema, J. (1997). Effectiveness of continuous bilateral sampling for robot chemotaxis in a turbulent odor plume: Implications for lobster chemo-orientation. The Biological Bulletin, 193(2), 215–216.

    Google Scholar 

  • Hayes, A., Martinoli, A., & Goodman, R. (2003). Swarm robotic odor localization: Off-line optimization and validation with real robots. Robotica, 21(04), 427–441.

    Article  Google Scholar 

  • Hernandez Bennetts, V., Lilienthal, A., Neumann, P., & Trincavelli, M. (2012). Mobile robots for localizing gas emission sources on landfill sites: Is bio-inspiration the way to go? Frontiers in Neuroengineering, 4, 20.

    Article  Google Scholar 

  • Ishida, H., Tanaka, H., Taniguchi, H., & Moriizumi, T. (2006). Mobile robot navigation using vision and olfaction to search for a gas/odor source. Autonomous Robots, 20(3), 231–238.

    Article  Google Scholar 

  • Jones, C. (1983). On the structure of instantaneous plumes in the atmosphere. Journal of Hazardous Materials, 7(2), 87–112.

    Google Scholar 

  • Kazadi, S. (2003). Extension of plume tracking behavior to robot swarms. In Proceedings of the IIIS/SCI Conference on Systems, Cybernetics, and Informatics, Orlando, USA.

  • Khatib, O. (1986). Real time obstacle avoidance for manipulators and mobile robots. International Journal of Robotics Research, 5(1), 90–99.

    Google Scholar 

  • Kowadlo, G., Rawlinson, D., Russell, R., & Jarvis, R. (2006). Bi-modal search using complementary sensing (olfaction/vision) for odour source localisation. In Proceedings of IEEE International Conference on Robotics and Automation, Orlando, USA.

  • Krishnanand, K., & Ghose, D. (2008). Theoretical foundations for rendezvous of glowworm-inspired agent swarms at multiple locations. Robotics and Autonomous Systems, 56(7), 549–569.

    Article  Google Scholar 

  • Legg, S., Benavides-Serrano, A., Siirola, J., Watson, J., Davis, S., Bratteteig, A., & Laird, C. (2012). A stochastic programming approach for gas detector placement using cfd-based dispersion simulations. Computers & Chemical Engineering, 47, 194–201.

    Google Scholar 

  • Li, F., Meng, Q., Bai, S., Li, J., & Popescu, D. (2008). Probability-PSO algorithm for multi-robot based odor source localization in ventilated indoor environments. Intelligent Robotics and Applications, 5314, 1206–1215.

    Google Scholar 

  • Li, W., Farrell, J., & Cardé, R. (2001). Tracking of fluid-advected odor plumes: Strategies inspired by insect orientation to pheromone. Adaptive Behavior, 9(3–4), 143.

    Article  Google Scholar 

  • Lilienthal, A., & Duckett, T. (2004). Building gas concentration gridmaps with a mobile robot. Robotics and Autonomous Systems, 48(1), 3–16.

    Article  Google Scholar 

  • Lochmatter, T., Aydin, E., Navarro, I., & Martinoli, A. (2010). A plume tracking algorithm based on crosswind formations. In Proceedings of International Symposium on Distributed Autonomous Robotics Systems. Lausanne, Switzerland.

  • Lochmatter, T. & Martinoli, A. (2009). Tracking odor plumes in a laminar wind field with bio-inspired algorithms. In Experimental robotics. Berlin, Heidelberg: Springer.

  • Loutfi, A., Coradeschi, S., Lilienthal, A., & Gonzalez, J. (2008). Gas distribution mapping of multiple odour sources using a mobile robot. Robotica, 27(02), 311–319.

    Article  Google Scholar 

  • Lytridis, C., Kadar, E., & Virk, G. (2006). A systematic approach to the problem of odour source localisation. Autonomous Robots, 20(3), 261–276.

    Article  Google Scholar 

  • Marjovi, A., & Marques, L. (2011). Multi-robot olfactory search in structured environments. Robotics and Autonomous Systems, 52(11), 867–881.

    Google Scholar 

  • Marjovi, A., & Marques, L. (2012). Multi-robot topological exploration using olfactory cues. Springer Tracts in Advanced Robotics Distributed Autonomous Robotic Systems, 83, 47–60.

  • Marjovi, A., Nunes, J., Marques, L., & de Almeida, A. (2010a). Multi-robot fire searching in unknown environment. Springer Tracts in Advanced Robotics Field and Service Robotics, 62, 341–351.

    Article  Google Scholar 

  • Marjovi, A., Nunes, J., Sousa, P., Faria, R., & Marques, L. (2010b). An olfactory-based robot swarm navigation method. In Proceedings of IEEE International Conference on Robotics and Automation, Alaska, USA.

  • Marjovi, A., Nunes, J.G., Marques, L., & de Almeida, A.T.(2009). Multi-robot exploration and fire searching. In IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA.

  • Marques, L., & de Almeida, A. (2006). ThermalSkin: A distributed sensor for anemotaxis robot navigation. In Proceedings of 5th IEEE International Conference on Sensors, South Korea.

  • Marques, L., Nunes, U., & Almeida, A. (2002). Olfaction-based mobile robot navigation. Thin Solid Films, 418(1), 51–58.

    Article  Google Scholar 

  • Marques, L., Nunes, U., & de Almeida, A. (2006). Particle swarm-based olfactory guided search. Autonomous Robots, 20(3), 277–287.

    Article  Google Scholar 

  • Martinez, D., Rochel, O., & Hugues, E. (2006). A biomimetic robot for tracking specific odors in turbulent plumes. Autonomous Robots, 20(3), 185–195.

    Article  Google Scholar 

  • Meng, Q., Yang, W., Wang, Y., & Zeng, M. (2011). Collective odor source estimation and search in time-variant airflow environments using mobile robots. Sensors, 11(11), 10415–10443.

    Article  Google Scholar 

  • Miyata, E., & Mori, S. (2011). Optimization of gas detector locations by application of atmospheric dispersion modeling tools. Sumitomo Kagaku, I, 1–10.

    Google Scholar 

  • Pasternak, Z., Bartumeus, F., & Grasso, F. (2009). Lévy-taxis: A novel search strategy for finding odor plumes in turbulent flow-dominated environments. Journal of Physics A: Mathematical and Theoretical, 42, 434010.

    Article  Google Scholar 

  • Press, W., Flannery, B., Teukolsky, S., & Vetterling, W. (2002). Direction set (Powell’s) methods in multidimensions. Numerical Recipes in C++: The Art of Scientific, Computing, 1992, 417–424.

    Google Scholar 

  • Pyk, P., Bermúdez i Badia, S., Bernardet, U., Knüsel, P., Carlsson, M., Gu, J., et al. (2006). An artificial moth: Chemical source localization using a robot based neuronal model of moth optomotor anemotactic search. Autonomous Robots, 20(3), 197–213.

    Article  Google Scholar 

  • Roberts, P., & Webster, D. (2002). Turbulent diffusion. Reston, VA: ASCE Press.

    Google Scholar 

  • Russell, R., Bab-Hadiashar, A., Shepherd, R., & Wallace, G. (2003). A comparison of reactive robot chemotaxis algorithms. Robotics and Autonomous Systems, 45(2), 83–97.

    Article  Google Scholar 

  • Russell, R., Thiel, D., Deveza, R., & Mackay-Sim, A. (1995). A robotic system to locate hazardous chemical leaks. In Proceedings of IEEE International Conference on Robotics and Automation, Nagoya, Japan.

  • Sutton, O. (1947). The problem of diffusion in the lower atmosphere. Quarterly Journal of the Royal Meteorological Society, 73(317–318), 257–281.

    Article  Google Scholar 

  • Vergassola, M., Villermaux, E., & Shraiman, B. (2007). ‘Infotaxis’ as a strategy for searching without gradients. Nature, 445(7126), 406–409.

    Article  Google Scholar 

  • Wang, H., Zhang, M., Wang, J., & Huang, M. (2010). Engineering an emergency search and rescue application with wireless sensor network and mobile robot. International Conference on Measuring Technology and Mechatronics Automation, 2, 112–115.

    Google Scholar 

  • Zarzhitsky, D., Spears, D., & Spears, W. (2005). Swarms for chemical plume tracing. In Proceedings of the IEEE Swarm Intelligence Symposium, CA, USA.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Marjovi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marjovi, A., Marques, L. Optimal spatial formation of swarm robotic gas sensors in odor plume finding. Auton Robot 35, 93–109 (2013). https://doi.org/10.1007/s10514-013-9336-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-013-9336-1

Keywords