Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

H2 synthesis from pentoses and biomass in Thermotoga spp.

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

We have investigated H2 production on glucose, xylose, arabinose, and glycerol in Thermotoga maritima and T. neapolitana. Both species metabolised all sugars with hydrogen yields of 2.7–3.8 mol mol−1 sugar. Both pentoses were at least comparable to glucose with respect to their qualities as substrates for hydrogen production, while glycerol was not metabolised by either species. Glycerol was also not metabolised by T. elfii. We also demonstrated that T. neapolitana can use wet oxidised wheat straws, in which most sugars are stored in glycoside polymers, for growth and efficient hydrogen production, while glucose, xylose and arabinose are consumed in parallel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bromaghim G, Gibeault K, Serfass J, Serfass P, Wagner E (2010) Hydrogen and fuel cells: the U.S. market report. A report by the National Hydrogen Association on 2008 data

  • Chhabra SR, Shockley KR, Conners SB, Scott KL, Wolfinger RD, Kelly RM (2003) Carbohydrate-induced differential gene expression patterns in the hyperthermophilic bacterium Thermotoga maritima. J Biol Chem 278:7540–7552

    Article  CAS  PubMed  Google Scholar 

  • Conners SB, Mongodin EF, Johnson MR, Montero CI, Nelson KE, Kelly RM (2006) Microbial biochemistry, physiology, and biotechnology of hyperthermophilic Thermotoga species. FEMS Microbiol Rev 30:872–905

    Article  CAS  PubMed  Google Scholar 

  • d’Ippolito G, Dipasquala L, Vella FM, Romano I, Gambacorta A, Fontana A (2010) Hydrogen metabolism in the extreme thermophile Thermotoga neapolitana. Int J Hydrog Energy 35:2290–2295

    Article  Google Scholar 

  • de Vrije T, Bakker RR, Budde MAW, Lai MH, Mars AE, Claassen PAM (2009) Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Biotechnol Biofuels 2:12

    Article  PubMed  Google Scholar 

  • Eriksen NT, Nielsen TM, Iversen N (2008) Hydrogen production in anaerobic and microaerobic Thermotoga neapolitana. Biotechnol Lett 30:103–109

    Article  CAS  PubMed  Google Scholar 

  • Fabiano B, Perego P (2002) Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes. Int J Hydrog Energy 27:149–156

    Article  CAS  Google Scholar 

  • Fardeau M-L, Ollivier B, Patel BK, Magot M, Thomas P, Rimbault A, Rocchiccioli F, Garcia J-L (1997) Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. Int J Syst Bacteriol 47:1013–1019

    Article  CAS  PubMed  Google Scholar 

  • Hamelinck CN, van Hooijdonk G, Faaij APC (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28:384–410

    Article  CAS  Google Scholar 

  • Huber R, Langworthy TA, König H, Thomm M, Woese CR, Sleytr YB, Stetter KO (1986) Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C. Arch Microbiol 144:324–333

    Article  CAS  Google Scholar 

  • Kotay SM, Das D (2007) Microbial hydrogen production with Bacillus coagulans IIT-BT S1 isolated from anaerobic sewage sludge. Bioresour Technol 98:1183–1190

    Article  CAS  PubMed  Google Scholar 

  • Lin CY, Chang R-C (2004) Fermentative hydrogen production at ambient temperature. Int J Hydrog Energy 29:715–720

    Article  CAS  Google Scholar 

  • Mars AE, Veuskens T, Budde MAW, van Doeveren PFNM, Lips SJ, Bakker RR, de Vrije T, Claassen PAM (2010) Biohydrogen production from untreated and hydrolyzed potato steam peels by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Int J Hydrog Energy 35:7730–7737

    Article  CAS  Google Scholar 

  • Mizuno O, Dinsdale R, Hawkes FR, Hawkes DL, Noike T (2000) Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresour Technol 73:59–65

    Article  CAS  Google Scholar 

  • Morimoto M, Atsuko M, Atif AAY, Ngan MA, Fakhru’l-Razi A, Iyuke SE, Bakir AM (2004) Biological production of hydrogen from glucose by natural anaerobic microflora. Int J Hydrog Energy 29:709–713

    Article  CAS  Google Scholar 

  • Munro SA, Zinder SH, Walker LP (2009) The fermentation stoichiometry of Thermotoga neapolitana and influence of temperature, oxygen, and pH on hydrogen production. Biotechnol Prog 25:1035–1042

    Article  CAS  PubMed  Google Scholar 

  • Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Nelson WE, Ketchum KA, McDonald L, Utterback TR, Malek JA, Linher KD, Garett MM, Stewart AM, Cotton MD, Pratt MS, Phillips CA, Richardson D, Heidelberg J, Sutton GG, Fleischmann RD, Eisen JA, White O, Salzberg SL, Smith HO, Venter JC, Fraser CM (1999) Evidence for lateral gene transfer between archae and bacteria from genome sequence of Thermotoga maritima. Nature 399:323–329

    Article  CAS  PubMed  Google Scholar 

  • Ngo TA, Kim K-R, Nguyen T-AD, Kim M-S, Sim S-J (2009) Fermentative hydrogen production from glycerol wastes of biodiesel manufacture by Thermotoga neapolitana. Proceedings of the 3rd international conference on fermentation technology for value added agricultural products, Khon Kaen, Thailand

  • Oh Y-K, Seol E-H, Kim JR, Park S (2003) Fermentative biohydrogen production by a new chemoheterotrophic bacterium Citrobacter sp. Y19. Int J Hydrog Energy 28:1353–1359

    Article  CAS  Google Scholar 

  • Rachman MA, Nakashimada Y, Kakizono T, Nishio N (1998) Hydrogen production with high yield and high evolution rate by self-flocculated cells of Enterobacter aerogenes in a packed-bed reactor. Appl Microbiol Biotechnol 49:450–454

    Article  CAS  Google Scholar 

  • Schröder C, Selig M, Schönheit P (1994) Glucose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritima; involvement of the Embden-Meyerhof pathway. Arch Microbiol 161:460–470

    Google Scholar 

  • Schut GJ, Adams MWW (2009) The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production. J Bacteriol 191:4451–4457

    Article  CAS  PubMed  Google Scholar 

  • Takahata Y, Nishijima M, Hoaki T, Maruyama T (2001) Thermotoga petrophila sp. nov. and Thermotoga naphtophila sp. nov., two hyperthermophilic bacteria from the Kubiki oil reservoir in Niigata, Japan. Int J Syst Evol Microbiol 51:1901–1909

    CAS  PubMed  Google Scholar 

  • U.S. Department of Energy (2008) World biofuels production potential. Understanding the challenges to meeting the U.S. renewable fuel standard, 67 pp

  • van Niel EWJ, Budde MAW, de Haas GG, van der Wal FJ, Claassen PAM, Stams AJM (2002) Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellusiruptor saccharolyticus and Thermotoga elfii. Int J Hydrog Energy 27:1391–1398

    Article  Google Scholar 

  • Van Ooteghem SA, Beer SK, Yue PC (2002) Hydrogen production by the thermophilic bacterium Thermotoga neapolitana. Appl Biochem Biotechnol 98–100:177–189

    Article  PubMed  Google Scholar 

  • Van Ooteghem SA, Jones A, van der Lelie D, Dong B, Mahajan D (2004) H2 production and carbon utilization by Thermotoga neapolitana under anaerobic and microaerobic growth conditions. Biotechnol Lett 26:1223–1232

    Article  PubMed  Google Scholar 

  • Varga E, Szengyel Z, Reczey K (2002) Chemical pretreatments of corn stover for enhancing enzymatic digestibility. Appl Biochem Biotechnol 98–100:73–87

    Article  PubMed  Google Scholar 

  • Vargas M, Noll KM (1996) Catabolite repression in the hyperthermophilic bacterium Thermotoga neapolitana is independent of cAMP. Microbiology 142:139–144

    Article  CAS  PubMed  Google Scholar 

  • Verhaart MRA, Bielen AAM, van der Oost J, Stams AJM, Kengen SWM (2010) Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: mechanisms for reductant disposal. Environ Technol 31:993–1003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Anne Belinda Thomsen, Risø DTU for supplying wet oxidised wheat straw.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels T. Eriksen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eriksen, N.T., Riis, M.L., Holm, N.K. et al. H2 synthesis from pentoses and biomass in Thermotoga spp.. Biotechnol Lett 33, 293–300 (2011). https://doi.org/10.1007/s10529-010-0439-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-010-0439-x

Keywords