Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Predicting tipping points of vegetation resilience as a response to precipitation: Implications for understanding impacts of climate change in India

  • Original Research
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Although the impacts of climate change are long-term in nature, the transformation in climate regime can lead to an ecosystem change from one stable to another stable state through intermediate bistable or metastable states. Such state transition or resilience to change in ecosystems is seldom sharp and therefore difficult to quantify with a single tipping point. Rather, the change can be understood through a tipping point range (tipping zone) across hysteresis loop(s). This study uses a satellite data-derived actual vegetation cover map of India and categorizes it into different vegetation types: forest, scrubland, grassland, and vegetation-less. We used high-resolution long-term average precipitation data to develop moisture-driven hysteresis curves and predict various tipping point ranges for vegetation-type regime shifts. Our results reveal that the forest and vegetation-less states could have one-way, while scrubland and grassland have two-way transition probabilities with a probable shift in precipitation regime. In the dry conditions, the precipitation tipping zone predicted between 154 and 452 mm for the forest to scrubland transitions, while the reverse transition (from scrubland to forest) could occur in wet conditions between 1080 and 1400 mm. Similarly, the transition between scrubland and grassland, between grassland and vegetation-less state, may occur in contrasting dry and wet conditions, creating a hysteresis loop. The results indicate that the reversal of state change requires differential energy spent during the onward and reverse transitions. The study proposes a novel characteristic curve demonstrating the varied precipitation tipping points/zones, precipitation overlaps and distribution of the various vegetation types, and co-existence zones, which has huge implications for understanding the climate change impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data available on request from the authors.

References

  • Bai ZG, Dent DL, Olsson L, Schaepman ME (2008) Proxy global assessment of land degradation. Soil Use Manag 24(3):223–234

    Article  Google Scholar 

  • Behera MD, Gupta AK, Barik SK, Das P, Panda RM (2018) Use of satellite remote sensing as a monitoring tool for land and water resources development activities in an Indian tropical site. Environ Monit Assess 190(7). https://doi.org/10.1007/s10661-018-6770-8

  • Beisner BE, Cuddington K (2010) Alternative stable states in ecology. Front Ecol 327(2):259–266

    Google Scholar 

  • Bonan GB (2008) Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320(5882):1444–1449. https://doi.org/10.1126/science.1155121

    Article  CAS  PubMed  ADS  Google Scholar 

  • Bucini G, Hanan NP (2007) A continental-scale analysis of tree cover in African savannas. Glob Ecol Biogeogr 16(5):593–605. https://doi.org/10.1111/j.1466-8238.2007.00325.x

    Article  Google Scholar 

  • Chitale V, Behera MD (2019) How will forest fires impact the distribution of endemic plants in the himalayan biodiversity hotspot? Biodivers Conserv 28(8–9):2259–2273. https://doi.org/10.1007/s10531-019-01733-8

    Article  Google Scholar 

  • Craine JM, Dybzinski R (2013) Mechanisms of plant competition for nutrients, water and light. Funct Ecol 27(4):833–840

    Article  Google Scholar 

  • Cusack DF, Karpman J, Ashdown D, Cao Q, Ciochina M, Halterman S, Lydon S, Neupane A (2016) Global change effects on humid tropical forests: evidence for biogeochemical and biodiversity shifts at an ecosystem scale. Rev Geophys 54(3):523–610. https://doi.org/10.1002/2015RG000510

    Article  ADS  Google Scholar 

  • Das P, Behera MD (2019) Can the forest cover in India withstand large climate alterations? Biodivers Conserv 28:8–9. https://doi.org/10.1007/s10531-019-01759-y

    Article  Google Scholar 

  • Das P, Behera MD, Patidar N, Sahoo B, Tripathi P, Behera PR, Srivastava SK, Roy PS, Thakur P, Agrawal SP, Krishnamurthy YVN (2018) Impact of LULC change on the runoff, base flow and evapotranspiration dynamics in eastern Indian river basins during 1985–2005 using variable infiltration capacity approach. J Earth Syst Sci 127(2). https://doi.org/10.1007/s12040-018-0921-8

  • Das P, Behera MD, Roy PS (2019) Estimation of Forest Cover Resilience in India using MC2 DVM. Int Geoscience Remote Sens Symp (IGARSS). https://doi.org/10.1109/IGARSS.2019.8898739

    Article  Google Scholar 

  • Das P, Mudi S, Behera MD, Barik SK, Mishra DR, Roy PS (2021) Automated mapping for long-term analysis of shifting cultivation in Northeast India. Remote Sens 13(6):1066

    Article  ADS  Google Scholar 

  • Davidson EA, de Araújo AC, Artaxo P, Balch JK, Brown IF, Bustamante MMC, Coe MT, DeFries RS, Keller M, Longo M (2012) & others. The Amazon basin in transition. Nature, 481(7381), 321–328

  • de Keersmaecker W, Lhermitte S, Honnay O, Farifteh J, Somers B, Coppin P (2014) How to measure ecosystem stability? An evaluation of the reliability of stability metrics based on remote sensing time series across the major global ecosystems. Glob Change Biol 20(7):2149–2161. https://doi.org/10.1111/gcb.12495

    Article  ADS  Google Scholar 

  • Dixit Y, Hodell DA, Petrie CA (2014) Abrupt weakening of the summer monsoon in northwest India ~ 4100 year ago. Geology 42(4):339–342. https://doi.org/10.1130/G35236.1

    Article  CAS  ADS  Google Scholar 

  • Drever CR, Peterson G, Messier C, Bergeron Y, Flannigan M (2006) Can forest management based on natural disturbances maintain ecological resilience? Can J for Res 36(9):2285–2299. https://doi.org/10.1139/X06-132

    Article  Google Scholar 

  • Fernandez-Illescas CP, Rodriguez-Iturbe I (2004) The impact of interannual rainfall variability on the spatial and temporal patterns of vegetation in a water-limited ecosystem. Adv Water Resour 27(1):83–95. https://doi.org/10.1016/j.advwatres.2003.05.001

    Article  ADS  Google Scholar 

  • Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37(12):4302–4315. https://doi.org/10.1002/joc.5086

    Article  Google Scholar 

  • Foley JA, Coe MT, Scheffer M, Wang G (2003) Regime shifts in the Sahara and Sahel: interactions between ecological and climatic systems in Northern Africa. Ecosystems 6(6):524–539. https://doi.org/10.1007/s10021-002-0227-0

    Article  Google Scholar 

  • Folke C, Carpenter S, Walker B, Scheffer M, Elmqvist T, Gunderson L, Holling CS (2004) Regime shifts, resilience, and biodiversity in ecosystem management. Ann Rev Ecol Syst 35:557–581. https://doi.org/10.1146/annurev.ecolsys.35.021103.105711

    Article  Google Scholar 

  • FSI (2021) India State of Forest Report 2021. Forest Survey of India, Dehradun

  • Geeta R, R., S., R., R., R.K., P.,G., R (1997) Late quanternary vegetational and climatic changes from tropical peats in southern India - An extended record up to 40000 years BP. Curr Sci (Vol 73(1):61–63

    Google Scholar 

  • Groffman PM, Baron JS, Blett T, Gold AJ, Goodman I, Gunderson LH, Levinson BM, Palmer MA, Paerl HW, Peterson GD, Poff NLR, Rejeski DW, Reynolds JF, Turner MG, Weathers KC, Wiens J (2006) Ecological thresholds: the key to successful environmental management or an important concept with no practical application? Ecosystems 9(1):1–13. https://doi.org/10.1007/s10021-003-0142-z

    Article  Google Scholar 

  • Hirota M, Holmgren M, van Nes EH, Scheffer M (2011) Global resilience of tropical forest and savanna to critical transitions. Science 334(6053):232–235. https://doi.org/10.1126/science.1210657

    Article  CAS  PubMed  ADS  Google Scholar 

  • Khan JA, Rodgers WA, Johnsingh AJT, Mathur PK (1994) Tree and shrub mortality and debarking by sambar Cervus unicolor (kerr) in Gir after a drought in Gujarat, India. Biol Conserv 68(2):149–154. https://doi.org/10.1016/0006-3207(94)90346-8

    Article  Google Scholar 

  • Kinzig AP, Ryan P, Etienne M, Allison H, Elmqvist T, Walker BH (2006) Resilience and regime shifts: assessing cascading effects. Ecol Soc 11(1). https://doi.org/10.5751/ES-01678-110120

  • Kooperman GJ, Chen Y, Hoffman FM, Koven CD, Lindsay K, Pritchard MS, Swann ALS, Randerson JT (2018) Forest response to rising CO 2 drives zonally asymmetric rainfall change over tropical land. Nat Clim Change 8(5):434–440

    Article  ADS  Google Scholar 

  • Kumar N, Lalitha S (2012) Testing for upper outliers in gamma sample. Commun Statistics-Theory Methods 41(5):820–828

    Article  MathSciNet  Google Scholar 

  • le Houérou HN (1996) Climate change, drought and desertification. J Arid Environ 34(2):133–185. https://doi.org/10.1006/jare.1996.0099

    Article  Google Scholar 

  • Li D, Wu S, Liu L, Zhang Y, Li S (2018) Vulnerability of the global terrestrial ecosystems to climate change. Glob Change Biol 24(9):4095–4106. https://doi.org/10.1111/gcb.14327

    Article  ADS  Google Scholar 

  • Matin S, Ghosh S, Behera MD (2019) Assessing land transformation and associated degradation of the west part of Ganga River Basin using forest cover land use mapping and residual trend analysis. J Arid Land 11(1):29–42

    Article  Google Scholar 

  • Nooghabi MJ, Nooghabi HJ, Nasiri P (2010) Detecting outliers in gamma distribution. Commun Statistics—Theory Methods 39(4):698–706

    Article  MathSciNet  Google Scholar 

  • Panda RM, Behera MD, Roy PS, Biradar C (2017) Energy determines broad pattern of plant distribution in Western Himalaya. Ecol Evol 7(24):10850–10860. https://doi.org/10.1002/ece3.3569

    Article  PubMed  PubMed Central  Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11(5):1633–1644

    Article  ADS  Google Scholar 

  • Pemadasa MA (2008) Tropical Grasslands of Sri Lanka and India Author (s): M. A. Pemadasa Source : Journal of Biogeography, Vol. 17, No. 4 / 5, Savanna Ecology and Management : Australian Perspectives and Intercontinental Comparisons (Jul. - Sep., 1990), pp. 39. Tropical Grasslands, 17(4), 395–400

  • Peterson G, Allen CR, Holling CS (1998) Ecological resilience, biodiversity, and scale. Ecosystems 1(1):6–18

    Article  Google Scholar 

  • Pillai AAS, Anoop A, Prasad V, Manoj MC, Varghese S, Sankaran M, Ratnam J (2018) Multi-proxy evidence for an arid shift in the climate and vegetation of the Banni grasslands of western India during the mid-to late-Holocene. Holocene 28(7):1057–1070

    Article  ADS  Google Scholar 

  • Ponce-Campos GE, Moran MS, Huete A, Zhang Y, Bresloff C, Huxman TE, Eamus D, Bosch DD, Buda AR, Gunter SA (2013) & others. Ecosystem resilience despite large-scale altered hydroclimatic conditions. Nature, 494(7437), 349–352

  • Ratajczak Z, Nippert JB (2012) Comment on global resilience of tropical forest and savanna to critical transitions. Science 336(6081):541

    Article  CAS  PubMed  ADS  Google Scholar 

  • Reddy CS, Jha CS, Dadhwal VK, Krishna PH, Pasha SV, Satish KV, Dutta K, Saranya KRL, Rakesh F, Rajashekar G (2016) & others. Quantification and monitoring of deforestation in India over eight decades (1930–2013). Biodiversity and Conservation, 25(1), 93–116

  • Reyer CPO, Rammig A, Brouwers N, Langerwisch F (2015) Forest resilience, tipping points and global change processes. J Ecol 103(1):1–4. https://doi.org/10.1111/1365-2745.12342

    Article  Google Scholar 

  • Rietkerk M, Brovkin V, van Bodegom PM, Claussen M, Dekker SC, Dijkstra HA, Goryachkin Sv, Kabat P, van Nes EH, Neutel AM, Nicholson SE, Nobre C, Petoukhov V, Provenzale A, Scheffer M, Seneviratne SI (2011) Local ecosystem feedbacks and critical transitions in the climate. Ecol Complex 8(3):223–228. https://doi.org/10.1016/j.ecocom.2011.03.001

    Article  Google Scholar 

  • Roy PS, Behera MD, Murthy MSR, Roy A, Singh S, Kushwaha SPS, Jha CS, Sudhakar S, Joshi PK, Reddy CS (2015) & others. New vegetation type map of India prepared using satellite remote sensing: Comparison with global vegetation maps and utilities. International Journal of Applied Earth Observation and Geoinformation, 39, 142–159

  • Sarkar A, Mukherjee AD, Sharma S, Sengupta T, Ram F, Bera MK, Bera S, Biswas O, Thakkar MG, Chauhan G, Yadava MG, Shukla AD, Juyal N (2020) New evidence of early Iron Age to Medieval settlements from the southern fringe of Thar Desert (western Great Rann of Kachchh), India: Implications to climate-culture co-evolution. Archaeological Research in Asia, 21(September 2019), 100163. https://doi.org/10.1016/j.ara.2019.100163

  • Scanlan JC (2002) Some aspects of tree-grass dynamics in Queensland’s grazing lands. Rangel J 24(1):56–82

    Article  Google Scholar 

  • Sharma A, Goyal MK (2018) Assessment of ecosystem resilience to hydroclimatic disturbances in India. Glob Change Biol 24(2):e432–e441. https://doi.org/10.1111/gcb.13874

    Article  ADS  Google Scholar 

  • Staver AC, Archibald S, Levin SA (2011) The global extent and determinants of savanna and forest as alternative biome states. Science 334(6053):230–232. https://doi.org/10.1126/science.1210465

    Article  CAS  PubMed  ADS  Google Scholar 

  • Sukumar R, Ramesh R, Pant RK, Rajagopalan G (1993) A $δ$ 13 C record of late quaternary climate change from tropical peats in southern India. Nature 364(6439):703–706

    Article  CAS  ADS  Google Scholar 

  • Tierney JE, Pausata FSR, deMenocal PB (2017) Rainfall regimes of the Green Sahara. Sci Adv, 3(1), e1601503

  • Tripathi P, Behera MD, Roy PS (2019) Plant invasion correlation with climate anomaly: an Indian retrospect. Biodivers Conserv 28(8–9):2049–2062

    Article  Google Scholar 

  • van Nes EH, Hirota M, Holmgren M, Scheffer M (2014) Tipping points in tropical tree cover: linking theory to data. Glob Change Biol 20(3):1016–1021. https://doi.org/10.1111/gcb.12398

    Article  ADS  Google Scholar 

  • Verbesselt J, Umlauf N, Hirota M, Holmgren M, van Nes EH, Herold M, Zeileis A, Scheffer M (2016) Remotely sensed resilience of tropical forests. Nat Clim Change 6(11):1028–1031

    Article  ADS  Google Scholar 

  • Walker B, Holling CS, Carpenter SR, Kinzig A (2004) Resilience, adaptability and transformability in social-ecological systems. Ecol Soc 9(2). https://doi.org/10.5751/ES-00650-090205

  • Wiegand K, Saltz D, Ward D (2006) A patch-dynamics approach to savanna dynamics and woody plant encroachment - insights from an arid savanna. Perspect Plant Ecol Evol Syst 7(4):229–242. https://doi.org/10.1016/j.ppees.2005.10.001

    Article  Google Scholar 

  • Wu J, Liang S (2020) Assessing Terrestrial Ecosystem Resilience using Satellite Leaf Area Index. Remote Sens 12(4):595

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The study forms part of a Doctoral study conducted by the lead Author (P.D.). All Authors are thankful to CORAL and IIT Kharagpur for providing laboratory facilities. P.D. and M.D.B. are thankful to the Center of Excellence (CoE) – Department of Science & Technology (DST), New Delhi, for financial support in the form of a research project. The discussion with Prof. D. Mishra, University of Georgia, USA, is greatly appreciated.

Author information

Authors and Affiliations

Authors

Contributions

PD and MDB conceived the ideas and designed the methodology; PD, MDB and PSR collected the data; PD and MDB analyzed the data; PD and MDB led the writing of the manuscript; MDB and SKB supervised the research. All authors contributed critically to the drafts and gave final approval for publication.

Corresponding author

Correspondence to Mukunda Dev Behera.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflict of interest.

Additional information

Communicated by Anzar Khuroo.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, P., Behera, M.D., Roy, P.S. et al. Predicting tipping points of vegetation resilience as a response to precipitation: Implications for understanding impacts of climate change in India. Biodivers Conserv (2024). https://doi.org/10.1007/s10531-024-02804-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10531-024-02804-1

Keywords