Abstract
Inspired by the paper platforms for 3-D cell culture, a paper-based microfluidic device containing drug concentration gradient was designed and constructed for investigating cell response to drugs based on high throughput analysis. This drug gradient generator was applied to generate concentration gradients of doxorubicin (DOX) as the model drug. HeLa cells encapsulated in collagen hydrogel were incubated in the device reservoirs to evaluate the cell viability based on the controlled release of DOX spatially. It was demonstrated that drug diffusion through the paper fibers created a gradient of drug concentration, which influenced cell viability. This drug screening platform has a great opportunity to be applied for drug discovery and diagnostic studies with simultaneous and parallel tests of drugs under various gradient concentrations.
Similar content being viewed by others
References
J. J. Agresti, E. Antipov, A. R. Abate, K. Ahn, A. C. Rowat, J. C. Baret, M. Marquez, A. M. Klibanov, A. D. Griffiths, D. A. Weitz, Proc. Natl. Acad. Sci. U. S. A. 107, 4004 (2010)
N. W. Choi, M. Cabodi, B. Held, J. P. Gleghorn, L. J. Bonassar, A. D. Stroock, Nat. Mater. 6, 908 (2007)
B. G. Chung, L. A. Flanagan, S. W. Rhee, P. H. Schwartz, A. P. Lee, E. S. Monuki, N. L. Jeon, Lab Chip 5, 401 (2005)
B. G. Chung, L. F. Kang, A. Khademhosseini, Expert. Opin. Drug Discov. 2, 1653 (2007)
M. C. Cushing, K. S. Anseth, Science 316, 1133 (2007)
W. P. Daley, S. B. Peters, M. Larsen, J. Cell Sci. 121, 255 (2008)
R. Derda, A. Laromaine, A. Mammoto, S. K. Y. Tang, T. Mammoto, D. E. Ingber, G. M. Whitesides, Proc. Natl. Acad. Sci. U. S. A. 106, 18457 (2009)
R. Derda, S. K. Y. Tang, A. Laromaine, B. Mosadegh, E. Hong, M. Mwangi, A. Mammoto, D. E. Ingber, G. M. Whitesides, PLoS One 6 (2011)
S. K. W. Dertinger, D. T. Chiu, N. L. Jeon, G. M. Whitesides, Anal. Chem. 73, 1240 (2001)
Y. Du, J. Shim, M. Vidula, M. J. Hancock, E. Lo, B. G. Chung, J. T. Borenstein, M. Khabiry, D. M. Cropek, A. Khademhosseini, Lab Chip 9, 761 (2009)
G. S. Du, J. Z. Pan, S. P. Zhao, Y. Zhu, J. M. J. den Toonder, Q. Fang, Anal. Chem. 85, 6740 (2013)
E. M. Fenton, M. R. Mascarenas, G. P. Lopez, S. S. Sibbett, ACS Appl. Mater. Interfaces 1, 124 (2009)
T. G. Fernandes, M. M. Diogo, D. S. Clark, J. S. Dordick, J. M. S. Cabral, Trends Biotechnol. 27, 342 (2009)
E. L. Fu, S. Ramsey, P. Kauffman, B. Lutz, P. Yager, Microfluid. Nanofluid. 10, 29 (2011)
J. K. He, Y. A. Du, J. L. Villa-Uribe, C. M. Hwang, D. C. Li, A. Khademhosseini, Adv. Funct. Mater. 20, 131 (2010)
M. A. Holden, S. Kumar, E. T. Castellana, A. Beskok, P. S. Cremer, Sensor. Actuat B-Chem. 92, 199 (2003)
J. Hong, J. B. Edel, A. J. deMello, Drug Discov. Today 14, 134 (2009)
X. Huang, C. S. Brazel, J. Control. Release 73, 121 (2001)
Y. J. Hwang, J. G. Lyubovitsky, Anal. Methods 3, 529 (2011)
H. Juvonen, A. Maattanen, P. Lauren, P. Ihalainen, A. Urtti, M. Yliperttula, J. Peltonen, Acta Biomater. 9, 6704 (2013)
L. F. Kang, B. G. Chung, R. Langer, A. Khademhosseini, Drug Discov. Today 13, 1 (2008)
J. Kim, D. Taylor, N. Agrawal, H. Wang, H. Kim, A. Han, K. Rege, A. Jayaraman, Lab Chip 12, 1813 (2012)
X. Li, J. F. Tian, G. Garnier, W. Shen, Colloid Surf. B-Biointerfaces 76, 564 (2010)
X. Li, D. R. Ballerini, W. Shen, Biomicrofluidics 6 (2012)
A. W. Martinez, S. T. Phillips, M. J. Butte, G. M. Whitesides, Angew. Chem.-Int. Edit. 46, 1318 (2007)
A. W. Martinez, S. T. Phillips, G. M. Whitesides, E. Carrilho, Anal. Chem. 82, 3 (2010)
J. L. Osborn, B. Lutz, E. Fu, P. Kauffman, D. Y. Stevens, P. Yager, Lab Chip 10, 2659 (2010)
S. Ostrovidov, N. Annabi, A. Seidi, M. Ramalingam, F. Dehghani, H. Kaji, A. Khademhosseini, Anal. Chem. 84, 1302 (2012)
S. L. Peterson, A. McDonald, P. L. Gourley, D. Y. Sasaki, J. Biomed. Mater. Res. Part A 72A, 10 (2005)
J. Pihl, J. Sinclair, E. Sahlin, M. Karlsson, F. Petterson, J. Olofsson, O. Orwar, Anal. Chem. 77, 3897 (2005)
A. R. Rezk, A. Qi, J. R. Friend, W. H. Li, L. Y. Yeo, Lab Chip 12, 773 (2012)
A. Seidi, H. Kaji, N. Annabi, S. Ostrovidov, M. Ramalingam, A. Khademhosseini, Biomicrofluidics 5 (2011a)
A. Seidi, M. Ramalingam, I. Elloumi-Hannachi, S. Ostrovidov, A. Khademhosseini, Acta Biomater. 7, 1441 (2011b)
S. A. Sundberg, Curr. Opin. Biotechnol. 11, 47 (2000)
A. G. G. Toh, Z. P. Wang, C. Yang, N. T. Nguyen, Microfluid. Nanofluid. 16, 1 (2004)
G. M. Walker, J. Q. Sai, A. Richmond, M. Stremler, C. Y. Chung, J. P. Wikswo, Lab Chip 5, 611 (2005)
A. P. Wong, R. Perez-Castillejos, J. C. Love, G. M. Whitesides, Biomaterials 29, 1853 (2008)
C. G. Yang, Y. F. Wu, Z. R. Xu, J. H. Wang, Lab Chip 11, 3305 (2011)
J. Yu, S. Wang, L. Ge, S. Ge, Biosens. Bioelectron. 26, 3284 (2011)
Y. Zhou, Y. Wang, T. Mukherjee, Q. Lin, Lab Chip 9, 1439 (2009)
Acknowledgments
This work was supported by a Tier 2 Academic Research Fund (ARC 22/13) and a Tier 1 Academic Research Fund (RG 37/14) from the Ministry of Education of Singapore awarded to Y.K. The Ph.D. scholarship from Nanyang Technological University awarded to P.X. is gratefully acknowledged. P.X. also thanks Yuli Kang for assistance in paper chip fabrication and setup.
Author information
Authors and Affiliations
Corresponding author
Additional information
B. Hong and P. Xue contributed equally to this work.
Rights and permissions
About this article
Cite this article
Hong, B., Xue, P., Wu, Y. et al. A concentration gradient generator on a paper-based microfluidic chip coupled with cell culture microarray for high-throughput drug screening. Biomed Microdevices 18, 21 (2016). https://doi.org/10.1007/s10544-016-0054-2
Published:
DOI: https://doi.org/10.1007/s10544-016-0054-2