Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An optimal control model for a system of degenerate parabolic integro-differential equations

  • Published:
Cybernetics and Systems Analysis Aims and scope

Abstract

An initial-boundary-value problem for a system of degenerate parabolic integro-differential equations is considered. The sufficient conditions for the existence and uniqueness of its generalized solution and for the existence of at least one optimal control for a given performance functional are obtained. A stable numerical solution to the initial-boundary-value problem is derived for a locally one-dimensional case and conditions are formulated for constructing a stable numerical algorithm of the optimal control problem on a class of piecewise-smooth control functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. O. A. Ladyzhenskaya, Boundary-Value Problems of Mathematical Physics [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  2. O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural’tseva, Linear and Quasilinear Parabolic Equations [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  3. V. P. Mikhailov, Partial Differential Equations [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  4. A. F. Verlan’ and V. S. Sizikov, Integral Equations: Methods, Algorithms, Programs [in Russian], Naukova Dumka, Kyiv (1986).

    Google Scholar 

  5. A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis [in Russian], Nauka, Moscow (1989).

    MATH  Google Scholar 

  6. I. V. Sergienko and V. S. Deineka, “Optimal control of an elliptic system with a nonsymmetric state operator,” Cybern. Syst. Analysis, 41, No. 6, 847–864 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  7. I. V. Sergienko and V. S. Deineka, “Complex optimal control of a thermally stressed state of a two-component body,” Cybern. Syst. Analysis, 40, No. 3, 340–357 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  8. V. V. Akimenko and A. G. Nakonechnyi, “Optimal control models for interregional migration under social risks,” Cybern. Syst. Analysis, 42, No. 3, 398–410 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  9. O. Yu. Trofimchuk, “Generalized solution to Cauchy problem for a degenerate parabolic integro-differential equation,” Visn. Kyiv. Univ. T. G. Shevchenka, Ser. Fiz.-Mat. Nauky, No. 3, 64–68 (2007).

  10. A. A. Samarskii, Theory of Difference Schemes [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  11. V. V. Akimenko, “Maximum principle and nonlinear monotonic schemes for parabolic equations,” Zh. Vych. Mat. Mat. Fiz., 39, No. 4, 618–629 (1999).

    MathSciNet  Google Scholar 

  12. N. S. Bakhvalov, N. P. Zhidkov, and G. M. Kobel’kov, Numerical Methods [in Russian], Nauka, Moscow (1987).

    MATH  Google Scholar 

  13. A. N. Tikhonov and V. Ya. Arsenin, Methods to Solve Ill-Posed Problems [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  14. E. B. Lee and L. Markus, Foundations of Optimal Control Theory, J. Wiley, New York (1967).

    MATH  Google Scholar 

  15. I. V. Sergienko and V. P. Shilo, Discrete Optimization Problems [in Russian], Naukova Dumka, Kyiv (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Kibernetika i Sistemnyi Analiz, No. 6, pp. 90–102, November–December 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akimenko, V.V., Nakonechnyi, A.G. & Trofimchuk, O.Y. An optimal control model for a system of degenerate parabolic integro-differential equations. Cybern Syst Anal 43, 838–847 (2007). https://doi.org/10.1007/s10559-007-0108-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10559-007-0108-9

Keywords