Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

An overview of energy efficiency techniques in cluster computing systems

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Two major constraints demand more consideration for energy efficiency in cluster computing: (a) operational costs, and (b) system reliability. Increasing energy efficiency in cluster systems will reduce energy consumption, excess heat, lower operational costs, and improve system reliability. Based on the energy-power relationship, and the fact that energy consumption can be reduced with strategic power management, we focus in this survey on the characteristic of two main power management technologies: (a) static power management (SPM) systems that utilize low-power components to save the energy, and (b) dynamic power management (DPM) systems that utilize software and power-scalable components to optimize the energy consumption. We present the current state of the art in both of the SPM and DPM techniques, citing representative examples. The survey is concluded with a brief discussion and some assumptions about the possible future directions that could be explored to improve the energy efficiency in cluster computing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CMOS:

Complementary Metal-oxide-Semiconductor

CPU:

Central Processing Unit

CPU MISER:

CPU Management Infra-Structure for Energy Reduction

DFS:

Dynamic Frequency Scaling

DPM:

Dynamic Power Management

DVS:

Dynamic Voltage Scaling

DVFS:

Dynamic Voltage and Frequency Scaling

FAWN:

Fast Array of Wimpy Nodes

GCA:

Grand Challenge Applications

HA:

High Availability

HPC:

High-Performance Computing

IT:

Information Technology

LB:

Load Balancing

Memory MISER:

Memory Management Infra-Structure for Energy Reduction

NASA:

National Aeronautics and Space Administration

NAS:

NASA Advanced Supercomputing

NPB:

NAS Division Parallel Benchmarks

PART system:

Power-aware Run-time System

PID controller:

Proportional-Integral-Derivative controller

PSC:

Power-Scalable Components

SDRAM:

Synchronous Dynamic Random Access Memory

SPM:

Static Power Management

VLAN:

Virtual Local-area Network

References

  1. Andersen, D.G., Franklin, J., Kaminsky, M., Phanishayee, A., Tan, L., Vasudevan, V.: FAWN: A fast array of wimpy nodes. In: Proc. of the 22nd ACM Symposium on Operating Systems Principles (SOSP), Big Sky, MT (2009)

    Google Scholar 

  2. Beloglazov, A., Buyya, R., Lee, Y.C., Zomaya, A.: A taxonomy and survey of energy-efficient data centers and cloud computing systems. In: Zelkowitz, M. (ed.) Advances in Computers. Elsevier, Amsterdam (2011). ISBN 13:978-0-12-012141-0

    Google Scholar 

  3. Blue Gene/LTeam: An overview of the BlueGene/L supercomputer. In: Supercomputing 2002 Technical Papers (2002)

    Google Scholar 

  4. Buyya, R. (ed.): High Performance Cluster Computing: Architectures and Systems. Prentice-Hall, New York (1999)

    Google Scholar 

  5. Buyya, R., Cortes, T., Jin, H.: Single system image. Int. J. High Perform. Comput. Appl. 15(2), 124–135 (2001)

    Article  Google Scholar 

  6. Cameron, K.W., Ge, R., Feng, X.: High-performance, power-aware distributed computing for scientific applications. Computer 38(11), 40–47 (2005)

    Article  Google Scholar 

  7. Caulfield, A.M., Grupp, L.M., Swanson, S.: Gordon: using flash memory to build fast, power-efficient clusters for data-intensive applications. In: Proc. of the 14th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS ’09) (2009)

    Google Scholar 

  8. Chen, G., Malkowski, K., Kandemir, M., Raghavan, P.: Reducing power with performance constraints for parallel sparse applications. In: Proc. of the 19th IEEE International Parallel and Distributed Processing Symposium, p. 231a. IEEE Comput. Soc., Los Alamitos (2005)

    Chapter  Google Scholar 

  9. Feller, E., Morin, C., Leprince, D.: State of the art of power saving in clusters and results from the EDF case study. Institut National de Recherche en Informatique et en Automatique (INRIA) (2010)

  10. Feng, W., Cameron, K.: The green500 list: Encouraging sustainable supercomputing. Computer 40(12), 50–55 (2007)

    Article  Google Scholar 

  11. Flautner, K., Reinhardt, S., Mudge, T.: Automatic performance setting for dynamic voltage scaling. Wirel. Netw. 8(5), 507–520 (2002)

    Article  MATH  Google Scholar 

  12. Freeh, V.W., Pan, F., Kappiah, N., Lowenthal, D.K.: Using multiple energy gears in MPI programs on a power-scalable cluster. In: Proc. of 10th ACM Symp. Principles and Practice of Parallel Programming (PPoPP), pp. 164–173. ACM, New York (2005)

    Google Scholar 

  13. Freeh, V.W., Pan, F., Kappiah, N., Lowenthal, D.K., Springer, R.: Exploring the energy-time tradeoff in MPI programs on a power-scalable cluster. In: Proc. of Parallel and Distributed Processing Symposium, vol. 01 (2005)

    Google Scholar 

  14. Ge, R., Feng, X., Cameron, K.W.: Improvement of power-performance efficiency for high-end computing. In: Proc. of the 1st Workshop on High-Performance, Power-Aware Computing (2005), 8 pp.

    Google Scholar 

  15. Ge, R., Feng, X., Cameron, K.W.: Performance constrained distributed DVS scheduling for scientific applications on power-aware clusters. In: Proc. of Supercomputing Conference, p. 34 (2005)

    Google Scholar 

  16. Ge, R., Feng, X., Feng, W., Cameron, K.W.: CPU MISER: a performance-directed, run-time system for power-aware clusters. In: Proc. of International Conference on Parallel Processing (ICPP07), p. 18 (2007)

    Google Scholar 

  17. Gropp, W., Lusk, E., Sterling, T. (eds.): Beowulf cluster computing with Linux, 2nd edn. MIT Press, Cambridge (2003)

    Google Scholar 

  18. Hotta, Y., Sato, M., Kimura, H., Matsuoka, S., Boku, T., Takahashi, D.: Profile-based optimization of power performance by using dynamic voltage scaling on a PC cluster. In: Proc. of the 20th IEEE International Parallel and Distributed Processing Symposium (IPDPS) (2006), 8 pp.

    Google Scholar 

  19. Hsu, C., Feng, W.: A feasibility analysis of power awareness in commodity-based high-performance clusters. In: IEEE International Conference on Cluster Computing, pp. 1–10 (2005)

    Google Scholar 

  20. Hsu, C., Feng, W.: A power-aware run-time system for high-performance computing. In: Proc. of ACM/IEEE SC Conference, p. 1. IEEE Comput. Soc., Los Alamitos (2005)

    Google Scholar 

  21. Huang, S., Feng, W.: A workload-aware, eco-friendly daemon for cluster computing. Technical Report, Computer Science, Virginia Tech (2008)

  22. Huang, S., Feng, W.: Energy-efficient cluster computing via accurate workload characterization. In: Proc. of the 9th IEEE/ACM International Symposium Cluster Computing and the Grid, pp. 68–75 (2009)

    Google Scholar 

  23. IBM: Blue Gene/P. http://www-03.ibm.com/press/us/en/pressrelease/21791.wss. Accessed: July 2011

  24. IBM: Blue Gene/Q. http://www-03.ibm.com/press/us/en/pressrelease/33586.wss. Accessed: July 2011

  25. Intel Developer’s manual: Intel 80200 Processor Based on Intel XScale Microarchitecture. Intel Press (1989)

  26. Kappiah, N., Freeh, V.W., Lowenthal, D.K.: Just in time dynamic voltage scaling: exploiting inter-node slack to save energy in MPI programs. In: Proc. of ACM/IEEE Conference Supercomputing, p. 33 (2005)

    Google Scholar 

  27. Kim, K.H., Buyya, R., Kim, J.: Power aware scheduling of bag-of-tasks applications with deadline constraints on DVS-enabled clusters. In: Proc. of CCGRID, pp. 541–548 (2007)

    Google Scholar 

  28. Li, K.: Performance analysis of power-aware task scheduling algorithms on multiprocessor computers with dynamic voltage and speed. IEEE Trans. Parallel Distrib. Syst. 19(11), 1484–1497 (2008)

    Article  Google Scholar 

  29. Lim, M.Y., Freeh, V.W.: Determining the minimum energy consumption using dynamic voltage and frequency scaling. In: Proc. of the 3rd Workshop on High-Performance, Power-Aware Computing, pp. 1–8 (2007)

    Google Scholar 

  30. Lim, M.Y., Freeh, V.W., Lowenthal, D.K.: Adaptive, transparent frequency and voltage scaling of communication phases in MPI programs. In: Proc. of ACM/IEEE Supercomputing, p. 14 (2006)

    Google Scholar 

  31. Mobile AMD Duron Processor Model 7 Data Sheet. AMD (2001)

  32. Pan, F., Freeh, V.W., Smith, D.M.: Exploring the energy-time tradeoff in high performance computing. In: Proc. of Parallel and Distributed Processing Symposium (2005)

    Google Scholar 

  33. Pfister, G.F.: In Search of Clusters, 2nd edn. Prentice-Hall, New York (1998)

    Google Scholar 

  34. Pinheiro, E., Bianchini, R., Carrera, E.V., Heath, T.: Load balancing and unbalancing for power and performance in cluster-based systems. In: Proc. of Workshop on Compilers and Operating Systems for Low Power (2001)

    Google Scholar 

  35. Pinheiro, E., Bianchini, R., Carrera, E.V., Heath, T.: Dynamic cluster reconfiguration for power and performance. In: Proc. of Workshop on Compilers and Operating Systems for Low Power, pp. 75–93 (2003)

    Chapter  Google Scholar 

  36. Ruan, X., Qin, X., Zong, Z., Bellam, K., Nijim, M.: An energy-efficient scheduling algorithm using dynamic voltage scaling for parallel applications on clusters. In: Proc. of the 16th IEEE International Conference on Computer Communications and Networks, Honolulu, Hawaii, pp. 735–740 (2007)

    Google Scholar 

  37. Smith, S.E.: What is cluster computing? O. Wallace (ed.). Copyright 2003–2011. http://www.wisegeek.com/what-is-cluster-computing.htm

  38. The Green500 list (June 2011). http://www.green500.org/lists/2011/06/top/list.php. Accessed: July 2011

  39. The Green500. http://www.green500.org. Accessed: July 2011

  40. Tolentino, M.E., Turner, J., Cameron, K.W.: Memory-miser: a performance-constrained runtime system for power-scalable clusters. In: Proc. of International Conference Computing Frontiers, pp. 237–246 (2007)

    Chapter  Google Scholar 

  41. US EPA: Report to congress on server and data center energy efficiency. Technical report (2007)

  42. Vasić, N., Barisits, M., Salzgeber, V., Kostic, D.: Making cluster applications energy-aware. In: ACDC. Proc. of the 1st Workshop on Automated Control for Datacenters and Clouds, pp. 37–42 (2009)

    Google Scholar 

  43. Vasudevan, V., Andersen, D.G., Kaminsky, M., Tan, L., Franklin, J., Moraru, I.: Energy-efficient cluster computing with FAWN: Workloads and implications. In: Proc. of e-Energy, Passau, Germany (2010)

    Google Scholar 

  44. von Laszewski, G., Wang, L., Younge, A.J., He, X.: Power-aware scheduling of virtual machines in DVFS-enabled clusters. In: Proc. of IEEE International Conference on Cluster Computing and Workshops, pp. 1–10 (2009)

    Google Scholar 

  45. Warren, M.S., Weigle, E.H., Feng, W.-C.: High-density computing: a 240-processor beowulf in one cubic meter. In: Proc. of IEEE/ACM SC2002, Baltimore, Maryland, pp. 1–11 (2002)

    Google Scholar 

  46. Yeo, C., Buyya, R.: A taxonomy of market-based resource management systems for utility-driven cluster computing. Softw. Pract. Exp. 36, 1381–1419 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samee Ullah Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valentini, G.L., Lassonde, W., Khan, S.U. et al. An overview of energy efficiency techniques in cluster computing systems. Cluster Comput 16, 3–15 (2013). https://doi.org/10.1007/s10586-011-0171-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-011-0171-x

Keywords