Abstract
Interest in image mosaicking has been spurred by a wide variety of research and management needs. However, for large-scale applications, remote sensing image mosaicking usually requires significant computational capabilities. Several studies have attempted to apply parallel computing to improve image mosaicking algorithms and to speed up calculation process. The state of the art of this field has not yet been summarized, which is, however, essential for a better understanding and for further research of image mosaicking parallelism on a large scale. This paper provides a perspective on the current state of image mosaicking parallelization for large scale applications. We firstly introduce the motivation of image mosaicking parallel for large scale application, and analyze the difficulty and problem of parallel image mosaicking at large scale such as scheduling with huge number of dependent tasks, programming with multiple-step procedure, dealing with frequent I/O operation. Then we summarize the existing studies of parallel computing in image mosaicking for large scale applications with respect to problem decomposition and parallel strategy, parallel architecture, task schedule strategy and implementation of image mosaicking parallelization. Finally, the key problems and future potential research directions for image mosaicking are addressed.
Similar content being viewed by others
References
Moik, G.: Digital Processing of Remotely Sensed Images. NASA (1980).
Jan, K., Andreas, R., Volker, C.R., Tobias, K., Jacek, K., Patrick, H.: Land cover mapping of large areas using chain classification of neighboring Landsat satellite images. Int. J. Remote. Sens., 113, 957C964 (2009)
Franklin, S.E., Wulder, M.A.: Remote sensing methods in medium spatial resolution satellite data land cover classi-cation of large areas. Prog. Phys. Geog. 26, 173–205 (2002)
Cihlar, J.: Land-cover mapping of large areas from satellites: status and research priorities. Int. J. Remote. Sens. 21, 1093–1114 (2000)
Coppin, P., Jonckheere, I., Nackaerts, K., Muys, B., Lambin, E.: Digital change detection methods in ecosystem monitoring: a review. Int. J. Remote. Sens. 25, 1565–1596 (2004)
Hame, T., Salli, A., Andersson, K., Lohi, A.: A new methodology for the estimation of biomass of conifer dominated boreal forest using NOAA AVHRR data. Int. J. Remote. Sens. 18, 3211–3243 (1997)
De Grandi, G., Malingreau, J.P., Leysen, M.: The ERS-1 Central Africa mosaic: a new perspective in radar remote sensing for the global monitoring of vegetation. IEEE T. Geosci. Remote. 37, 1730–1746 (1997)
Cohen, W.B., Maiersperger, T.K., Spies, T.A., Oetter, D.R.: Modelling forest cover attributes as continuous variables in a regional context with thematic mapper data. Int. J. Remote. Sens. 22, 2279–2310 (2001)
Kim, K., Jezek, K.C., Liu, H.: Orthorectified image mosaic of Antarctica from 1963 Argon satellite photography: image processing and glaciological applications. Int. J. Remote. Sens. 28, 5357–5373 (2007)
Merson, R.H.: An AVHRR mosaic image of Antarctic. Int. J. Remote. Sens. 10, 669–674 (1989)
Jezek, K.C.: Flow variations of the Antarctic ice sheet from comparison of modern and historical satellite data. In: Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, IGARSS, Seattle, vol. 4, pp. 2240–2242 (1998)
Rosenqvist, A., Shimada, M., Chapman, B., Freeman, A., De Grandi, G., Saatchi, S., Rauste, Y.: The global rain forest mapping project: a review. Int. J. Remote. Sens. 21, 1375–1387 (2000)
Shusun, L.: Summer environmental mapping potential of a large-scale ERS-1 SAR mosaic of the state of Alaska. Int. J. Remote. Sens. 20, 387–401 (1999)
Homer, C.G., Ramsey, R.D., Edwards, T.C., Falconer, A.: Landscape cover-type modeling using a multi-scene thematic mapper mosaic. Photogramm. Eng. Rem. S. 63, 59–67 (1997)
Wulder, M.A., White, J.C., Goward, S.N., Masek, J.G., Irons, J.R., Herold, M., Cohen, W.B., Loveland, T.R., Woodcock, C.E.: Landsat continuity: Issues and opportunities for land cover monitoring. Remote Sens. Environ. 112, 955–969 (2008)
Matthew, C.H., Thomas, R.L.: A review of large area monitoring of land cover change using landsat data. Remote. Sens. Environ. 122, 66–74 (2012)
Muller, S.V., Racoviteanu, A.E., Walker, D.A.: Landsat MSS-derived land-cover map of northern Alaska: extrapolation methods and a comparison with photo-interpreted and AVHRR-derived maps. Int. J. Remote. Sens. 20, 2921–2946 (1999)
Shimabukuro, Y.E., Novo, E.M., Merte, L.K.: Amazon River mainstem flood landsat TM digital mosaic. Int. J. Remote. Sens. 23, 57–69 (2002)
Masek, J.G., Vermote, E.F., Saleous, N.E., Wolfe, R., Hall, F.G., Huemmrich, K.F., Gao, F., Kutler, J., Lim, T.K.: A landsat surface reflectance dataset for North America, 1990–2000. IEEE T. Geosci. Remote. 3, 68–72 (2006)
Homer, C., Huang, C.Q., Yang, L.M., Wylie, B., Coan, M.: Development of a 2001 national land-cover database for the United States. Photogramm. Eng. Rem. S. 70, 829–840 (2004)
Vogelmann, J.E., Howard, S.M., Yang, L.M., Larson, C.R., Wylie, B.K., Van Driel, N.: Completion of the 1990s national land cover data set for the conterminous United States from landsat thematic mapper data and ancillary data sources. Photogramm. Eng. Rem. S. 67, 650–662 (2004)
David, P.R., Junchang, J., Kristi, K., Pasquale, L.S., Valeriy, K., Matthew, H., Thomas, R.L., Eric, V., Chunsun, Z.: Web-enabled landsat data (WELD): landsat ETM+ composited mosaics of the conterminous United States. Remote. Sens. Environ. 114, 35–49 (2010)
Li, Z., Nadon, S., Cihlar, J.: Satellite-based detection of Canadian boreal forest fires: development and application of the algorithm. Int. J. Remote. Sens. 21, 3057–3069 (2000)
Wei, Z., Chen, Z.C., Zhang, B.: CBERS-1 digital images mosaic and mapping of China. J. Imag. Graph. 11, 787–791 (2006)
Wang, A., Chi, Y., Wang, Z., Wu, F., Wang, X., Li, L., Yan, M.: Study on mosaic technology and mapping of China based on the multispectral images of Beijing-1 small satellite. J. Remote Sens. 13, 83–90 (2009)
Bindschadler, R., Brownworth, F., Stephensonn, S.: Landsat thematic mapper imagery of the Siple coast. Antarct. Antarct. J. U. S. 23, 214–215 (1988)
Bennat, H., Sievers, J.: Remote sensing and GIS application in Antarctica. EARSel Adv. Remote Sens. 1, 160–168 (1992)
Ferrigno, J.G., Mullins, J.L., Stapleton, J.A., Chavez, P.S., Velasco, M.G., Williams, R.S.: Satellite image map of Antarctica, miscellaneous investigations map series. US Geol. Surv. 1–2560 (1996)
USGS, Satellite Image Map of Antarctica, 1:5, 000, 000, Miscellaneous Map Investigation Series, I-2284 (1991).
Jezek, K.: Glaciological properties of the Antarctic ice sheet, from Radarsat-1 synthetic aperture radar imagery. Ann. Glaciol. 29, 286–290 (1999)
Scambos, T., Haran, T., Fahnestock, M., Painter, T.H., Bohlander, J.: MODIS-based mosaic of Antarctica (MOA) data sets: continent-wide surface morphology and snow grain size. Remote Sens. Environ. 111, 242–257 (2007)
Bindschadler, R., Vornberger, P., Fleming, A., Fox, A., Mullins, J., Binnie, D., Paulsen, S., Sara, J., Granneman, B., Gorodetzky, D.: The landsat image mosaic of Antarctica. Remote Sens. Environ. 112, 4214–4226 (2008)
Turner, P.J., Prata, A.J., Howden, R.T., Houghton and Taylor, N.R.: An ATSR-2 mosaic image of Australia. Int. J. Remote. Sens. 22, 3889–3894 (2001)
Rauste, Y.: Compilation of bi-temporal JERS-1 SAR mosaics over the African rain forest belt in the GRFM project. In: Proceedings of the Presented at the International Geoscience and Remote Sensing Symposium (IGARSS99), Hamburg, 1999, 28 June–2 July 1999 (IEEE Publications), vol. 2, pp. 750–752 (1999)
Khatib, L., Gasch, J., Morris, R., Covington, S.: Local search for optimal global map generation using mid-decadal landsat images. In: Proceedings of AAAI Workshop on Preference Handling for Arti-cial Intelligence, Vancouver (2007)
Mayaux, P., Achard, F., Malingreau, J.: Global tropical forest area measurements derived from coarse resolution satellite imagery: a comparison with other approaches. Environ. Conserv. 25, 37–52 (1998)
Tucker, C.J., Denelle, M.G., Dykstm, D.: NASA’s global orthorectified landsat data set. Photogramm. Eng. Rem. S. 70, 313–322 (2004)
Lee, C.A., Gasster, S.D., Plaza, A., et al.: Recent developments in high performance computing for remote sensing: a review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 4(3), 508–527 (2011)
Dongarra, J., Sterling, T., Simon, H., et al.: High-performance computing: clusters, constellations, MPPs, and future directions. Comput. Sci. Eng. 7(2), 51–59 (2005)
Hu, B., Zhou, H., Wang, P., Liu, H.: A parallel algorithm of PCA image fusion in remote sensing and its implementation. Microelectron. Comput. 23, 153–155 (2006)
Plaza, A., Valencia, D., Plaza, J., Martinez, P.: Commodity cluster based parallel processing of hyperspectral imagery. J. Parallel Distrib. Comput. 66, 345C358 (2006)
An, X., Wang, X., Du, Z., Liu, D., Li, G.: Fine-grained parallel algorithm for remote sensing image mosaics for cluster system. J. Tsinghua Univ. (Sci. and Tech.), 42, 1389–1392 (2002)
Hu, B., Liu, H.Z., Wang, P.F., et al.: Research on parallel image fusion model on pixel scale. Comput. Era 2, 6–8 (2008)
Chen, C., Tan, Y.H., Li, H.T., Gu, H.Y.: A fast and automatic parallel algorithm of remote sensing image mosaic. Microelectron. Comput. 28, 59–62 (2011)
Chen, C.: High Performance Image Mosaicking for HJ-1 Satellites Images. Huazhong University of Science and Technology, Wuhan (2011)
Wang, Y., Ma, Y., Liu, P., Liu, D., Xie, J.: An optimized image mosaic algorithm with parallel i/o and dynamic grouped parallel strategy based on minimal spanning tree. In: Proceedings of the Ninth International Conference on Grid and Cloud Computing, Beijing (2010)
Ma, Y., Wang, L., Zomaya, A., Chen, D., Ranjan, R.: Task-tree based large-scale mosaicking for massive remote sensed imageries with dynamic DAG scheduling. IEEE Trans. Parallel Distrib. Syst. 25(8), 2126–2137 (2014)
Yang, Y.: Design and implementation of high performance mosaic system for remote sensing image, MS Thesis, Huazhong University of Science and Technology, Wuhan (2012)
Merzky, A., Stamou, K., Jha, S., Katz, D.S.: A fresh perspective on developing and executing DAG-based distributed applications: a case-study of SAGA-based montage. In: Proceedings of the 5th IEEE International Conference on e-Science, pp.231–238 (2009)
Berriman, G.B., Good, J.C., Curkendall, D., Jacob, J., Katz, D.S., Prince, T.A., Williams, R.: Montage: an on-demand image mosaic service for the NVO. In: Proceedings of the Astronomical Data Analysis Software and Systems (ADASS) XII, (2002)
Rabenseifner, R., Hager, G., Jost, G.: HybridMPI/OpenMP parallel programming on clusters of multi-core SMP nodes. In: Proceedings of the Parallel, Distributed and Network-based Processing (PDP), pp. 427–436 (2009)
Wang, H.: Parallel Algorithms for Image and Video Mosaic Based Applications, MS Thesis, University of Georgia, Atlanta (2005)
Nickolls, J., Dally, W.J.: The GPU computing era. IEEE Micro 30, 56C69 (2010)
Balz, T., Stilla, U.: Hybrid GPU-based single and double bounce SAR simulation. IEEE Trans. Geosci. Remote Sens. 47, 3519C3529 (2009)
Qin, C.Z., Zhan, L.J.: Parallelizing flow-accumulation calculations on graphics processing unitsFrom iterative DEM preprocessing algorithm to recursive multiple-flow-direction algorithm. Comput. Geosci. 43, 7–16 (2012)
Camargo, A., Schultz, R.R., Wang, Y., Fevig, R.A., He, Q.: GPU-CPU implementation for super-resolution mosaicking of unmanned aircraft system (UAS) surveillance video. In: Proceedings IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI), pp. 25–28 (2010)
Yong, K.A.T., Wee, J.T., Leong, K.K.: Fast colour balance adjustment of IKONOS imagery using CUDA. In: Proceedings of the Geoscience and Remote Sensing Symposium, pp. 1052–1055 (2008)
Qin, C.Z., Zhan, L.J., Zhu, A.X., Zhou, C.H.: A strategy for raster-based geocomputation under different parallel computing platforms. Int. J. Geogr. Inform. Sci. doi:10.1080/13658816.2014.911300 (2014)
Thenkabail, P.S.: Characterization of the alternative to slash-and-burn benchmark research area representing the Congolese rainforests of Africa using near-real-time SPOT HRV data. Int. J. Remote. Sens. 20, 839–877 (1999)
Acknowledgments
This study is supported by National Natural Science Foundation (41301028), Project of State Key Laboratory of Resources and Environmental Information System (LREIS).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chen, L., Ma, Y., Liu, P. et al. A review of parallel computing for large-scale remote sensing image mosaicking. Cluster Comput 18, 517–529 (2015). https://doi.org/10.1007/s10586-015-0422-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10586-015-0422-3